
Beyond Nonlinear Model Predictive Control for
Autonomous Driving

Rudolf Reiter

Systems Control and Optimization Laboratory (syscop)

Transportation Seminar
KTH Royal Institute of Technology

Stockholm, Freiburg
October 27, 2023



Introduction

I Task: optimization based planning (and control) of autonomous vehicles

I Scenarios: autonomous racing and multi-lane traffic

I Challenges: interactions, combinatorial complexity, real-time requirements

I Tools: real-time optimization, combinatorial optimization and machine learning
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Personal Introduction
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Personal Introduction
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Personal Introduction
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Bird’s eye view on my research and outline
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Preliminaries
Nonlinear Model Predictive Control

Model Constraints

Cost function

Controler 

Optimization Problem

Plant

State EstimateControl

I Cost function: quadratic (reference tracking)

I Model: nonlinear (kinematic/dynamic single track)

I Constraints: non-convex (often concave due convex
obstacle shapes)

Sounds scary!

I Computation time?

I Solution Guarantee?

I Optimality?
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Preliminaries
Nonlinear Model Predictive Control

Model Constraints

Cost function

Controler 

Optimization Problem

Plant

State EstimateControl

I Computation time?

X fast structure exploiting QP solvers (e.g., HPIPMa)
X fast NLP solvers (e.g., acadosb)
X real-time iterations

I Solution Guarantee?

I Optimality?

aGianluca Frison and Moritz Diehl. “HPIPM: a high-performance quadratic programming framework for
model predictive control”. In: IFAC-PapersOnLine 53.2 (2020). 21st IFAC World Congress, pp. 6563–6569.
issn: 2405-8963. doi: https://doi.org/10.1016/j.ifacol.2020.12.073.

bRobin Verschueren et al. “acados – a modular open-source framework for fast embedded optimal
control”. In: Mathematical Programming Computation (2021). issn: 1867-2957. doi:
10.1007/s12532-021-00208-8.
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Preliminaries
Nonlinear Model Predictive Control

Model Constraints

Cost function

Controler 

Optimization Problem

Plant

State EstimateControl

I Computation time?

I Solution Guarantee?

7 not directly
X workarounds: saving last feasible trajectory, backup

controller

I Optimality?
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Preliminaries
Nonlinear Model Predictive Control

Model Constraints

Cost function

Controler 

Optimization Problem

Plant

State EstimateControl

I Computation time?

I Solution Guarantee?

I Optimality?

7 local, given sufficiently close initial guess
X local solutions are often good
X initial guess provided by other module
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Preliminaries
Nonlinear Model Predictive Control

Model Constraints

Cost function

Controler 

Optimization Problem

Plant

State EstimateControl

Our usual setting for solving the nonlinear optimization
problem for autonomous driving

I Direct multiple shooting formulation

I Gauss-Newton Hessian approximation

I No condensing of QP required

I RK4 integration, step size 20− 100ms

I Horizon of 10s

I Terminal safe set often for velocity=0m
s

I No globalization, full steps

I Slack variables for feasibility
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Part 2: Model1
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Part 2: Frenet Coordinate Frame

1Rudolf Reiter and Moritz Diehl. “Parameterization Approach of the Frenet Transformation for Model
Predictive Control of Autonomous Vehicles”. In: 2021 European Control Conference (ECC). 2021,
pp. 2414–2419. doi: 10.23919/ECC54610.2021.9655053.
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Modeling in two coordinate frames
Kinematic single track model in Cartesian coordinate frame (CCF)

I Cartesian states xc,C = [px, py, ϕ]> ∈ R3

I Some states are CF independent:
x¬c = [v, δ]> ∈ R2

I Full state vector: xC = [xc,C> x¬c>]>

I Inputs CF independent: u = [F d r]> ∈ R2

I Dynamics of CCF dependent states

ẋc,C = f c,C(xC, u) =

v cos(ϕ)
v sin(ϕ)
v
l tan(δ)

 (1)

I Dynamics of CCF independent states

ẋ¬c = f¬c(x¬c, u, ϕ) =[
1
m (F d − Fwind(v, ϕ)− F roll(v))

r

]
(2)

lr

lf
δ

ϕ

ϕ

CG
vev

−F resev ewind

ϕwind

xe

yeyv

F dev

xv
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Modeling in two coordinate frames
Kinematic single track model in Frenet coordinate frame (FCF)

I Transformation:

xc,F = Fγ(xc,C) =

 s∗

(pveh − γ(s∗))>en
ϕγ(s∗)− ϕ

 , (3)

s∗(pveh) = arg min
σ

∥∥pveh − γ(σ)
∥∥2

2
. (4)

I Frenet states xc,F = Fγ(xc,C) = [s, n, α]> ∈ R3

I Full state vector: xF = [xc,F> x¬c>]>

I Dynamics of FCF dependent states

ẋc,F = f c,F(xF, u) =


v cos(α)
1−nκ(s)

v sin(α)
v
l tan(δ)− κ(s)v cos(α)

1−nκ(s)

 .
(5)

ϕ

ϕnen

pveh

α

pref=γ(s)

γ(σ)

ϕγ(s)

xe

ye

Beyond NMPC for AD Rudolf Reiter 20



Modeling in two coordinate frames
Comparison
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Feature CCF FCF

reference definition 7 3
boundary constraints 7 3
obstacle specification 3 7
disturbance specification 3 7
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Modeling in two coordinate frames
Frenet Coordinate Frame Reference

I Transformation along a reference curve γ(σ)

I How to choose this curve?
I Tracking of a center line

I Racing: free to choose
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Modeling in two coordinate frames
Frenet Coordinate Frame Reference

I The transformation has one big issue!

I Singular region at points [s, n]>, with 1− nκ(s) = 0

I Luckily usually no problem.

Can use the free choice of the reference in racing scenarios to our advantage2

2Reiter and Diehl, “Parameterization Approach of the Frenet Transformation for Model Predictive Control of
Autonomous Vehicles”.
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Modeling in two coordinate frames
Frenet Coordinate Frame Reference

Solving a priori an optimization problem to obtain γ(σ) that pushes the evolute outside and
increases other favorable numercial properties for NMPC.3

3Reiter and Diehl, “Parameterization Approach of the Frenet Transformation for Model Predictive Control of
Autonomous Vehicles”.
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Part 3: Obstacle constraint formulation4

Perception
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Planning

Model

Constraints Part 3,4 and 5:
Obstacle constraint formulation, prediction, global optimization

4Rudolf Reiter et al. “Frenet-Cartesian model representations for automotive obstacle avoidance within
nonlinear MPC”. In: European Journal of Control (2023), p. 100847. issn: 0947-3580. doi:
https://doi.org/10.1016/j.ejcon.2023.100847. url:
https://www.sciencedirect.com/science/article/pii/S0947358023000766.
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Part 3: Obstacle constraint formulation
Problem Statement

I Task: Obstacle formulation for the Frenet Coordinate Frame

I Basic approach: use optimization-based control: (Cartesian) NMPC

I Problem: nonconvexities and nonlinearities

I Variation: transform model into curvilinear coordinate frame (Frenet Frame)

I Problem: new coordinate frame makes part of problem more non-smooth

I Our idea: Use redundantly two coordinate frames

I Questions: How to formulate it? Speedup? Other advantages?
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Part 3: Obstacle constraint formulation
Outline

1. Obstacle avoidance

2. Ways to combine both models

3. NMPC Algorithm

4. Results
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Obstacle avoidance

Comparison of several different obstacle avoidance formulations

1. Ellipse - circle

2. Covering circles

3. Separating hyper-planes

a) b) c)

d) e) f) hθncirc = 3
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Remember: Frenet Coordinate Frame vs. Cartesian Coordinate Frame
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Ways to combine both models

Goal:

I Reference definition, boundary constraints → Frenet Coordinate Frame (FCF)

I Obstacle specification, Cartesian disturbance (e.g., wind force) → Cartesian Coordinate
Frame (CCF)

Possible formulations of NMPC:

I Use only one CF, approximate and simplify non-smooth constraints

I Model dynamics in one CF, use Frenet transformation Fγ or inverse Frenet transformation
Fγ−1 to obtain other states

I Model dynamics redundantly in both CFs

Beyond NMPC for AD Rudolf Reiter 30



Ways to combine both models
Conventional

Possible formulations of NMPC:

I Use only one CF, approximate and simplify non-smooth constraints
I Main frame CCF: approximate Fγ with artificial path state (MPCC) (Not reviewed here)
I Main frame FCF: over-approximate obstacles → conventional

I Model dynamics in one CF, use Fγ or Fγ−1 to obtain other states

I Model dynamics redundantly in both CFs
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Ways to combine both models
Direct elimination

Possible formulations of NMPC:

I Use only one CF, approximate and simplify non-smooth constraints

I Model dynamics in one CF, use Fγ or Fγ−1 to obtain other states
I Main frame CCF 7: Fγ is an nonlinear optimization problem by itself
I Main frame FCF 3: Fγ−1 can be obtained efficiently → direct elimination

I Model dynamics redundantly in both CFs
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Ways to combine both models
Lifting

Possible formulations of NMPC:

I Use only one CF, approximate and simplify non-smooth constraints

I Model dynamics in one CF, use Fγ or Fγ−1 to obtain other states

I Model dynamics redundantly in both CFs
I Lifting to higher dimension
I Number of states nx increases from 5 to 8 → lifting

Beyond NMPC for AD Rudolf Reiter 33



NMPC Problem
Direct elimination

min
xF
0 ,...,x

F
N ,

u0,...,uN−1

θ1,...,θnopp

N−1∑
k=0

‖uk‖2R +
∥∥xF

k − xF
ref,k

∥∥2

Q
+
∥∥xF

N − xF
ref,N

∥∥2

QN

s.t. xF
0 = x̂F

0 ,

xF
i+1 = ΦF(xF

i , ui,∆t), i = 0, . . . , N − 1,

u ≤ ui ≤ u, i = 0, . . . , N − 1,

xF ≤ xF
i ≤ xF, i = 0, . . . , N,

xc,C ≤ Fγ−1(xc,F) ≤ xc,C,i = 0, . . . , N,

alat ≤ aF
lat(xi) ≤ alat, i = 0, . . . , N,

vN ≤ vN ,
Fγ−1(xc,F) ∈ P(xc,opp,j

i , θj), i = 0, . . . , N − 1,

j = 1, . . . , nopp.

(6)

xF ∈ R5 . . . Frenet states, xc,C ∈ R3 . . . Cartesian position states, P . . . obstacle-free set
θ . . . hyperplane variables, Fγ−1 . . . inverse Frenet transformation, ΦF(·) . . . integrator
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NMPC Problem
Lifted

min
xd
0 ,...,x

d
N ,

u0,...,uN−1

θ1,...,θnopp

N−1∑
k=0

‖uk‖2R+
∥∥xF

k − xF
ref,k

∥∥2

Q
+
∥∥xF

N − xF
ref,N

∥∥2

QN

s.t. xd
0 = x̂d

0 ,

xd
i+1 = Φd(xd

i , ui,∆t), i = 0, . . . , N − 1,

u ≤ ui ≤ u, i = 0, . . . , N − 1,

xd ≤ xd
i ≤ xd, i = 0, . . . , N,

alat ≤ alat(x
d
i ) ≤ alat,i = 0, . . . , N,

vN ≤ vN ,
xc,C
i ∈ P(xc,opp,j

i , θj), i = 0, . . . , N − 1,

j = 1, . . . , nopp.

(7)

xF ∈ R5 . . . Frenet states, xd ∈ R8 . . . lifted states, P . . . obstacle-free set
θ . . . hyperplane variables, Φd(·) . . . model integration function
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Results

Setup:

I Simulation on randomized scenarios with three obstacles to overtake

I acados, 6s horizon length, 50 discr. points
I Two scenarios:

I Truck-sized obstacles
I Car-sized obstacles

I Obstacle formulations:
I Ellipsoids
I Covering circles (1,3,5,7)
I Separating hyper-planes

I Coordinate formulations:
I Conventional (over-approximation)
I Direct elimination
I Lifted ODE

Evaluation:

I Computation time

I Maximum progress

Beyond NMPC for AD Rudolf Reiter 36



Results
car-sized
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Figure: Box-plot comparison of the NMPC solution timings for each real-time iteration and the final
progress after 20 seconds for different obstacle formulations for car-sized vehicles.
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Results
truck-sized
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Figure: Box-plot comparison of the NMPC solution timings for each real-time iteration and the final
progress after 20 seconds for different obstacle formulations for truck-sized vehicles.
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Results
Computation times

Computation times (ms) for truck-sized obstacles
Conventional Direct Elimination Lifted ODE

EL 1.5± 0.4 1.9± 0.2 28.9% 1.4 ± 0.3 −6.6%
C5 7.2± 1.9 7.6± 1.7 5.5% 7.2± 1.8 −0.0%
C7 14.0± 3.2 14.0± 2.8 −0.1% 13.9± 2.9 −0.4%
HP 7.5± 1.5 7.5± 1.5 −0.1% 7.4± 1.7 −1.6%

car-sized obstacles

EL 1.5± 0.5 2.0± 0.4 29.6% 1.4 ± 0.4 −5.7%
C1 1.4± 0.4 1.9± 0.4 34.0% 1.4± 0.4 −3.5%
C3 3.6± 1.1 4.0± 1.0 12.4% 3.6± 1.1 0.6%
HP 8.0± 2.3 7.9± 1.9 −0.6% 7.7± 2.0 −4.0%

Table: Mean and standard deviation of computation times for different scenarios, obstacle formulations
and lifting formulations. Additionally, the difference in percent to the conventional formulation is given.
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Part 4: Obstacle prediction5

Perception

Autonomous Driving Software Stack Autonomous Vehicle

ControlPlanning

Cost Functionminimize

Nonlinear Model Predictive Control

subject to

Planning

Model

Constraints Part 3,4 and 5:
Obstacle constraint formulation, prediction, global optimization

5Rudolf Reiter et al. “An Inverse Optimal Control Approach for Trajectory Prediction of Autonomous Race
Cars”. In: 2022 European Control Conference (ECC). 2022, pp. 146–153. doi:
10.23919/ECC55457.2022.9838100.
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Part 4: Obstacle prediction
General Goal: Prediction of Opponents

I In AD, a core challenge is the prediction of other agents

I Algorithms differ related to the availability of data

For autonomous racing

I Lack of huge data sets

I Some prior knowledge available: coarse models, racing objective

I An extensive online system identification is impossible

Our goal

I Fast prediction within Milliseconds and adaption to observed data

Beyond NMPC for AD Rudolf Reiter 41



Part 4: Obstacle prediction
General Goal: Prediction of Opponents
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Part 4: Obstacle prediction
Our Approach

I Including a physics-based parametric model of the opponent inducing a racing intention

I The racing intention is modeled by means of a parametric nonlinear low-level program
(LLNLP) for progress maximization

I The estimation of the parameters is performed by solving an inverse optimal control (IOC)
problem, which enforces the optimality conditions for the LLNLP as constraints

I Output: Predicted trajectories (non-interactive)

Beyond NMPC for AD Rudolf Reiter 43



Part 4: Obstacle prediction
Advantages

Advantages:

I A physically explainable prediction

I A good prediction even without any data

I Adaptive algorithm that improves with amount of data

I Fast improvement

Disadvantages:

I We ignore interactive behavior of any kind

I Structural bias even with an infinite amount of data

Beyond NMPC for AD Rudolf Reiter 44



The Prediction Algorithm
Architecture

M instances

“Slow” 
Online

Past observed trajectoriesCurrent initial state(s)

Precomputed

“Fast” 
Online

CQP

HLNLP

LLNLPPath prediction

Global optimal 
racing curve

Predicted trajectories

a

b c

d

e

f

g

a: global racing path
b: initial state x̄0

c: trajectory data samples
d: constraints amax

e: weights w
f: Cartesian coordinates and
curvature parameters of blended path
segment κ̄
g: predicted trajectory
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The Prediction Algorithm
Low-Level Program for Trajectory Prediction (LLNLP)

M instances

“Slow” 
Online

Past observed trajectoriesCurrent initial state(s)

Precomputed

“Fast” 
Online

CQP

HLNLP

LLNLPPath prediction

Global optimal 
racing curve

Predicted trajectories

a

b c

d

e

f

g
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The Prediction Algorithm
Low-Level Program for Trajectory Prediction (LLNLP)

I Nonlinear program to maximize progress (xN ) along given path

I Weights Q,R, qN estimated by HLNLP

I Acceleration constraints ha(xk, κ̄, amax) estimated by CQP

min
x0,...,xN ,
U0,...,UN−1
s0,...,sN

N−1∑
k=0

‖xk − xrk‖22,Q + ‖Uk − U r
k‖22,R + qN

>xN +
N∑
k=0

α11
>sLL,k + α2 ‖sLL,k‖22

s.t. x0 = x̄0

xk+1 = F (xk, Uk,∆t), k = 0, . . . , N − 1

x 4 xk 4 x

0 4 ha(xk, κ̄, amax) + sLL,k

0 4 sLL,k, k = 0, . . . , N,

(8)
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The Prediction Algorithm
Quadratic Program for Constraint Estimation

M instances

“Slow” 
Online

Past observed trajectoriesCurrent initial state(s)

Precomputed

“Fast” 
Online

CQP

HLNLP

LLNLPPath prediction

Global optimal 
racing curve

Predicted trajectories

a

b c

d

e

f

g
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The Prediction Algorithm
Quadratic Program for Constraint Estimation
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I Constraints are estimated separatly from the weights

I Symmetric polytope with 8 bounds (5 independent)
fitted to data

I Iterative QP, with previously estimated value as
”arrival term” (moving horizon estimation)
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The Prediction Algorithm
High Level Program for Weight Estimation (HLNLP)

M instances

“Slow” 
Online

Past observed trajectoriesCurrent initial state(s)

Precomputed

“Fast” 
Online

CQP

HLNLP

LLNLPPath prediction

Global optimal 
racing curve

Predicted trajectories

a

b c

d

e

f

g
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The Prediction Algorithm
High Level Program for Weight Estimation (HLNLP)

I We optimize for the weights w = [Q,R, qN ] of the LLNLP

I L2 loss on observed trajectories and predicted trajectories

I We use only states x and controls u that are solutions of the LLNLP PLL(w, x̄0, κ̄, amax)

I → bi-level optimization problem

min
X,U,w

NT−1∑
k=1

‖xk − x̄k‖22,Qk + ‖w − ŵ‖22,P−1

s.t. X, U ∈ argminPLL(w, x̄0, κ̄, amax)

w < 0

(9)

I We use the the KKT conditions of the LLNLP as constraints in the HLNLP

I Homotopy on penalized relaxation

I Arrival cost with weights P−1
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Results
Setup

The simulation:

I Simulation framework with dynamic vehicle model

I Comparisons with Notebook

I Hardware-in-the-loop for competitions

I Las Vegas race track

I 1k randomly parameterized test runs

I (Due Covid currently only simulated races)

The setup:

I Hardware: HP Elitebook, Intel Core i7-8550 CPU (1.8 GHz) and Nvidia Drive PX2

I The used frequency for the synchronous LLNLP was 10 Hz

I The HLNLP and CQP ran asynchronously

I 200 seconds until HLNLP converged
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Results
Timings

Table: Solver and timing statistics

Component Solver tmax (ms) tave (ms) fail rate (%)

PP none < 1 < 1 0
CQP OSQP 15.5 8.1 0

HLNLP IPOPT 6237 520 5

LLNLP
acados

hpipm(QP)
2748 91 0.2
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Results
Final Prediction Errors by Prediction Horizon (converged)
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Results
Final Prediction Errors by Used Components (converged)

6.0 8.0
Prediciton horizon (s)

20

40

60

80

100

120

Po
si

ti
on

Er
ro

r
(m

)

fixed param.
CQP active

HLNLP active
all active

Beyond NMPC for AD Rudolf Reiter 55



Part 5: Global optimization for obstacle avoidance

Perception

Autonomous Driving Software Stack Autonomous Vehicle

ControlPlanning

Cost Functionminimize

Nonlinear Model Predictive Control

subject to

Planning

Model

Constraints Part 3,4 and 5:
Obstacle constraint formulation, prediction, global optimization
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Global optimization for obstacle avoidance
Mixed-integer optimization

I Gradient-based optimization only works for local solutions in continuous space

I Alternative 1: search in a discrete space

I Alternative 2 : search in a mixed continuous-discrete space mixed integer optimization

Beyond NMPC for AD Rudolf Reiter 57



Global optimization for obstacle avoidance
Overview

I Mixed-integer optimization in racing with static obstacles and rewards6: Solving simplified
problem first → shifting road boundaries accordingly

I Learning-based mixed-integer optimization for multi-lane traffic Expert MIQP formulation
that solves problems offline. Learning the binary variables. Predicting the binary variables
and solving the remaining QP online (submitted)

I Efficient formulation to obtain small MIQP that can be solved online within Milliseconds
(soon submitted)

6Rudolf Reiter et al. “Mixed-integer optimization-based planning for autonomous racing with obstacles and
rewards”. In: IFAC-PapersOnLine 54.6 (2021). 7th IFAC Conference on Nonlinear Model Predictive Control
NMPC 2021, pp. 99–106. issn: 2405-8963. doi: https://doi.org/10.1016/j.ifacol.2021.08.530. url:
https://www.sciencedirect.com/science/article/pii/S2405896321013057.
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Part 6: Strategic motion planning7

Perception

Autonomous Driving Software Stack Autonomous Vehicle

ControlPlanning

Cost Functionminimize

Nonlinear Model Predictive Control

subject to

Planning

Model

Constraints

Part 6: Strategic driving

7Rudolf Reiter et al. “A Hierarchical Approach for Strategic Motion Planning in Autonomous Racing”. In:
2023 European Control Conference (ECC). 2023, pp. 1–8. doi: 10.23919/ECC57647.2023.10178143.
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Part 6: Strategic motion planning
Problem Statement

I Task: Strategic planning and control of autonomous race cars → blocking of other agents,
efficient overtaking

I Idea 1: use only optimization-based control (NMPC)

I Problem: hard to define strategic decisions (bi-level problem)

I Idea 2: use only reinforcement learning

I Problem: can hardly account for safety, many data needed for simple maneuvers

I Idea: Combine reinforcement learning and NMPC hierarchically

I Questions: Improved performance over pure RL? Faster learning? Meaningful learning?
Guaranteed safety?
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Part 6: Strategic motion planning
Outline

1. Relation to the safety filter

2. Proposed architecture

3. NMPC Formulation

4. RL Formulation

5. HILEPP Algorithm

6. Evaluation

7. Conclusion and Discussion
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Relation to the safety filter8

Original

The safety filter uses an NLP to project controls onto safe sets

8Kim Peter Wabersich and Melanie N. Zeilinger. “A predictive safety filter for learning-based control of
constrained nonlinear dynamical systems”. In: Automatica 129 (2021), p. 109597. issn: 0005-1098. doi:
https://doi.org/10.1016/j.automatica.2021.109597.
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Relation to the safety filter9

Our approach

9Wabersich and Zeilinger, “A predictive safety filter for learning-based control of constrained nonlinear
dynamical systems”.
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Relation to the safety filter10

Our approach

Safety Filter HILEPP (ours)

min
X,U

‖u0 − ā‖2R

s.t. x0 = x̄0, xN ∈ St

xi+1 = F (xi, ui), i = 0, . . . , N − 1

xi ∈ X , ui ∈ U , i = 0, . . . , N − 1
(10)

min
X,U

L(X,U, a)

s.t. x0 = x̂0, xN ∈ St

xi+1 = F (xi, ui), i = 0, . . . , N − 1

xi ∈ X , ui ∈ U , i = 0, . . . , N − 1,
(11)

10Wabersich and Zeilinger, “A predictive safety filter for learning-based control of constrained nonlinear
dynamical systems”.
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Architecture
Details

MPPRL-policy Pa

Xrefz

πMPP(z, P )πθ(s)

Environment

HILEPP

s
gs(z) GP (a)

x̂

πLL(Xref , x̂)ego vehicle

Nob controlled opponent vehicles

random road

Invariance pre-conditioning function gs(z) sets inputs s to RL policy a = πΘ(s). Function
GP (a) transforms RL actions a to MPP parameters P . Policy πMPP(z, P ) solves NLP and
outputs safe reference Xref .
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NMPC (MPP) formulation
Gerneral

I MPP is a NMPC used as planner

I Kinematic vehicle model in Frenet coordinate frame. States x> = [ζ, n, α, v, δ]

I Obstacle avoidance with ellipses - circles11

I Obstacle prediction in two modes (Defined according to racing rules):
I Follower: generously assuming straight linear motion in Frenet coordinate frame
I Leader: evasively allowing only decelerating linear motion

I Cost parameterization through RL actions:

GP (a) : a→
(
ξref,0(a), . . . , ξref,N (a), Qw(a)

)
(12)

ξref,k(a) = [0 n 0 vx 0]> ∈ Rnx (13)

Qw(a) = diag([0 wn 0 wv 0]) (14)

11Rudolf Reiter et al. Frenet-Cartesian Model Representations for Automotive Obstacle Avoidance within
Nonlinear MPC. 2023. arXiv: 2212.13115 [eess.SY].
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NMPC (MPP) formulation
Cost function

Cost parameterization through RL actions:

GP (a) : a→
(
ξref,0(a), . . . , ξref,N (a), Qw(a)

)
(15)

ξref,k(a) = [0 n 0 vx 0]> ∈ Rnx (16)

Qw(a) = diag([0 wn 0 wv 0]) (17)

NMPC (MPP) parameterized cost:

L(X,U, a,Ξ) =

N−1∑
k=0

‖xk − ξref,k(a)‖2Qw(a) + ‖uk‖2R

+ ‖xN − ξref,N (a)‖2Qt +

N∑
k=0

‖σk‖2Qσ,2 + |q>σ,1σk|.
(18)

We compare two action vectors (with or without setting weights):

I HILEPP-I: aI := [n, vx]>

I HILEPP-II: aII := [n, vx, wn, wv]
>

Beyond NMPC for AD Rudolf Reiter 67



NMPC (MPP) formulation
NLP

The NLP that is solved for each MPP iteration, can be written as:

min
X,U,Ξ

L(X,U, a,Ξ)

s.t. x0 = x̂, Ξ ≥ 0, xN ∈ St

xi+1 = F (xi, ui) i = 0, . . . , N − 1

Ui ∈ Bu, i = 0, . . . , N − 1

xi ∈ Bx(σk) ∩Blat(σk) i = 0, . . . , N

xi ∈ Bob(pob,j
i ,Σob,j

i , σk) i = 0, . . . , N

j = 0, . . . , Nob,

(19)

using states X, controls U , slacks Ξ, dynamic integration function F (·), state and acceleration

constraints Bx(·), Blat(·) and obstacle constraints Bob(pob,j
i ,Σob,j

i , σk), depending on

prediction pob,j
i ,Σob,j

i for each obstacle.
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Overview
Architecture

MPPRL-policy Pa

Xrefz

πMPP(z, P )πθ(s)

Environment

HILEPP

s
gs(z) GP (a)

x̂

πLL(Xref , x̂)ego vehicle

Nob controlled opponent vehicles

random road
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Reinforcement Learning

General

I Markov assumption, state space S, action space A, looking for policy πθ : S 7→ A, reward
function R : S ×A 7→ R

I We use actor critic policy gradient algorithm12 with actor πθ and a critic Qφ

Specific

I Pre-processing function from ego state s = [n, v, α]>, road curvature evaluations κ(·) and
obstacle states z to (partly) invariant RL states sobi = [ζobi − ζ, nobi , vobi , αobi ]

>

sk = gs(zk) = [κ(ζ + di), . . . , κ(ζ + dN ), s>, s>ob1
, . . . , s>obN ]> (20)

I We use the reward for center line speed ṡ and the total rank, with

R(s, a) =
ṡ

200
+

Nob∑
i=1

1
ζk>ζ

obi
k

(21)

12Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.
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Overview
Architecture

MPPRL-policy Pa

Xrefz

πMPP(z, P )πθ(s)

Environment

HILEPP

s
gs(z) GP (a)

x̂

πLL(Xref , x̂)ego vehicle

Nob controlled opponent vehicles

random road
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Evaluation
Setup

I Training of ∼ 106 steps in randomized simulated scenarios

I Only the ego agent is trained, opponents only use MPP

I Three different scenario types

overtaking

agents

blocking

mixed

eg
o

w
ea

ke
r

st
ro

n
ge

r

starting positionsscenarios

I Comparison of
I MPP
I RL
I HILEPP-I (only reference states)
I HILEPP-II (reference states and weights)
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Evaluation
Training

I pure RL learns slow

I HILEPP very sample efficient

I HILEPP-I learns quicker than HILEPP-II

0 10

Env. Steps (105)

0

500
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ve
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et
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rn
Overtaking

0 10

Env. Steps (105)

Blocking

0 10

Env. Steps (105)

Mixed

HILEPP I HILEPP II RL MPP
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Evaluation
Performance

I pure RL struggled to keep up even with MPP

I overtaking does not require much strategy → MPP compared to HILEPP smaller

I HILEPP-II performs better than HILEPP-I

Overtaking

Blocking

0 200 400 600 800

Average Return

Mixed

HILEPP I HILEPP II RL MPP

Module Mean± Std. Max

MPP 5.45± 2.73 8.62
RL policy 0.13± 0.01 0.26
HILEPP-I 6.90± 3.17 9.56
HILEPP-II 7.41± 2.28 9.21

Table: Computation times (ms) of modules.
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Evaluation
Examples

I →Play-scenario-blocking

I →Play-scenario-mixed

I →Play-scenario-overtake
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Conclusion and discussion

I Nonlinear model predictive control is a powerful framework for motion planning in
autonomous driving

I Additional performance obtained by
I Mixed-integer optimization
I Inverse optimal control
I Reinforcement learning

I Orthogonal approaches exist
I Discrete search space → graph search, tree search
I End-to-end learning
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Conclusion and discussion
Using nonlinear model predictive control for motion planning...

Pros

I Using existing powerful NLP solvers

I Easy separation and specification of task
(cost, model, constraints)

I Optimal solutions

I Interpretability

I Safety certificate

I Extendability

I Adaptability

Cons

I No bound on computation time

I No guarantees for global optimum

I No guarantees to even converge to a
stationary point

I Interpretability
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Thanks for the help of all supervisors, colleagues and friends!

Thank you for your attention!
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