Optimization-Based Motion Planning and Control for Autonomous Driving

Rudolf Reiter

Systems Control and Optimization Laboratory, University of Freiburg

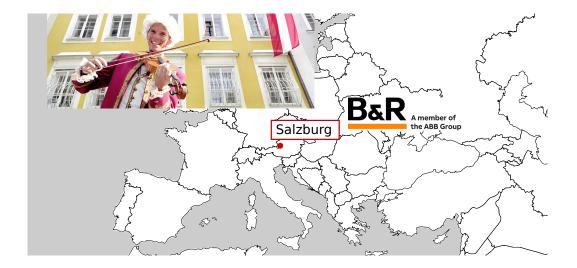
IfA Coffee Talk ETH Zürich June 7, 2024

Outline

- 1. Personal introduction
- 2. Vehicle model in the Frenet coordinate frame
- 3. Challenges with obstacle avoidance
 - 3.1 obstacle shape
 - 3.2 non homeomorphic planning space
 - 3.3 obstacle prediction and interaction

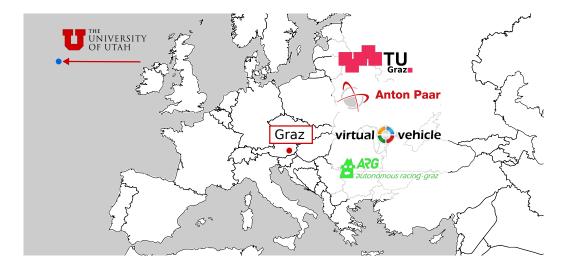
Personal Introduction

Salzburg, Austria: until 2009



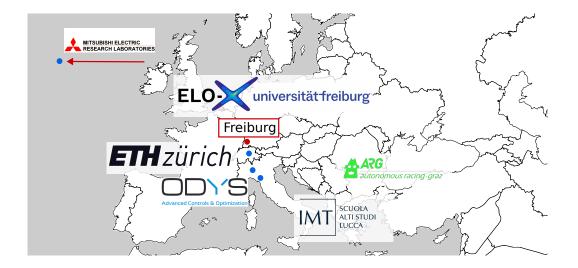
Personal Introduction

Graz, Austria: until 2021



Personal Introduction

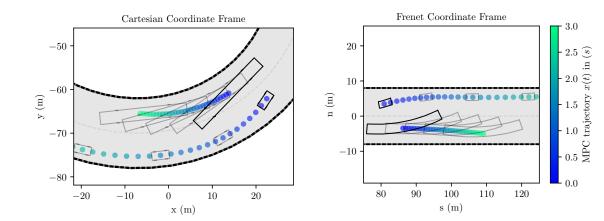
Freiburg, Germany: until ~2024



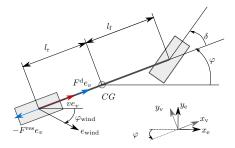
Vehicle Model

Modeling in two coordinate frames

Comparison



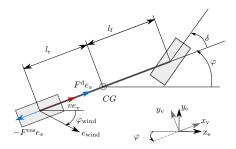
• Cartesian states $x^{c,C} = [p_x, p_y, \varphi]^\top \in \mathbb{R}^3$



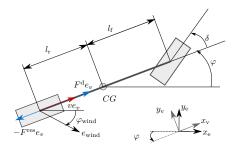
- Cartesian states $x^{c,C} = [p_x, p_y, \varphi]^\top \in \mathbb{R}^3$
- Some states are CF independent: $x^{\neg c} = [v, \delta]^\top \in \mathbb{R}^2$



- Cartesian states $x^{c,C} = [p_x, p_y, \varphi]^\top \in \mathbb{R}^3$
- Some states are CF independent: $x^{\neg c} = [v, \delta]^{\top} \in \mathbb{R}^2$
- ▶ Full state vector: $x^{C} = [x^{c,C\top} \quad x^{\neg c\top}]^{\top}$

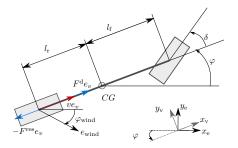


- Cartesian states $x^{c,C} = [p_x, p_y, \varphi]^\top \in \mathbb{R}^3$
- Some states are CF independent: $x^{\neg c} = [v, \delta]^{\top} \in \mathbb{R}^2$
- ▶ Full state vector: $x^{C} = [x^{c,C\top} \quad x^{\neg c\top}]^{\top}$
- ▶ Inputs CF independent: $u = [F^d \ r]^\top \in \mathbb{R}^2$



- ▶ Cartesian states $x^{c,C} = [p_x, p_y, \varphi]^\top \in \mathbb{R}^3$
- Some states are CF independent: $x^{\neg c} = [v, \delta]^{\top} \in \mathbb{R}^2$
- ▶ Full state vector: $x^{C} = [x^{c,C\top} \quad x^{\neg c\top}]^{\top}$
- ▶ Inputs CF independent: $u = [F^d \ r]^\top \in \mathbb{R}^2$
- Dynamics of CCF dependent states

$$\dot{x}^{\mathrm{c,C}} = f^{\mathrm{c,C}}(x^{\mathrm{C}}, u) = \begin{bmatrix} v \cos(\varphi) \\ v \sin(\varphi) \\ \frac{v}{l} \tan(\delta) \end{bmatrix}$$

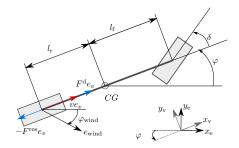


- ▶ Cartesian states $x^{c,C} = [p_x, p_y, \varphi]^\top \in \mathbb{R}^3$
- Some states are CF independent: $x^{\neg c} = [v, \delta]^{\top} \in \mathbb{R}^2$
- ▶ Full state vector: $x^{C} = [x^{c,C\top} \quad x^{\neg c\top}]^{\top}$
- ▶ Inputs CF independent: $u = [F^d \ r]^\top \in \mathbb{R}^2$
- Dynamics of CCF dependent states

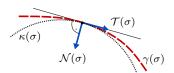
$$\dot{x}^{\mathrm{c,C}} = f^{\mathrm{c,C}}(x^{\mathrm{C}}, u) = \begin{bmatrix} v \cos(\varphi) \\ v \sin(\varphi) \\ \frac{v}{l} \tan(\delta) \end{bmatrix}$$

Dynamics of CCF independent states

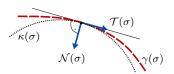
$$\dot{x}^{\neg c} = f^{\neg c}(x^{\neg c}, u, \varphi) = \begin{bmatrix} \frac{1}{m}(F^{d} - F^{wind}(v, \varphi) - F^{roll}(v)) \\ r \end{bmatrix}$$



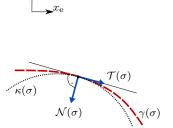
 \blacktriangleright Let $\gamma(t)$ be a cont. smooth diff. curve in \mathbb{R}^2



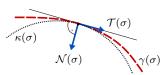
- \blacktriangleright Let $\gamma(t)$ be a cont. smooth diff. curve in \mathbb{R}^2
- \blacktriangleright Arc length: $\sigma(t) = \int_0^t \|\dot{\gamma}(\tau)\|_2 \, d\tau$



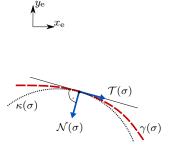
- \blacktriangleright Let $\gamma(t)$ be a cont. smooth diff. curve in \mathbb{R}^2
- Arc length: $\sigma(t) = \int_0^t \|\dot{\gamma}(\tau)\|_2 d\tau$
- $\blacktriangleright\,$ Can parameterize curve by arc length $\rightarrow \gamma(\sigma)$



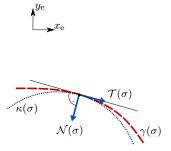
- Let $\gamma(t)$ be a cont. smooth diff. curve in \mathbb{R}^2
- Arc length: $\sigma(t) = \int_0^t \|\dot{\gamma}(\tau)\|_2 d\tau$
- $\blacktriangleright\,$ Can parameterize curve by arc length $\rightarrow \gamma(\sigma)$
- Tangent unit vector T(σ) := γ'(σ), Curvature vector T'(σ), Curvature κ(σ) = ||T'(σ)|| = (φ^γ(σ))' Normal unit vector N(σ) := T'(σ) || T'(σ)||



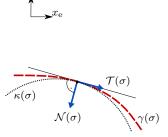
- Let $\gamma(t)$ be a cont. smooth diff. curve in \mathbb{R}^2
- Arc length: $\sigma(t) = \int_0^t \|\dot{\gamma}(\tau)\|_2 d\tau$
- $\blacktriangleright\,$ Can parameterize curve by arc length $\rightarrow \gamma(\sigma)$
- ► Tangent unit vector $\mathcal{T}(\sigma) := \gamma'(\sigma)$, Curvature vector $\mathcal{T}'(\sigma)$, Curvature $\kappa(\sigma) = \|\mathcal{T}'(\sigma)\| = (\varphi^{\gamma}(\sigma))'$ Normal unit vector $\mathcal{N}(\sigma) := \frac{\mathcal{T}'(\sigma)}{\|\mathcal{T}'(\sigma)\|}$
- Frenet-Serret frame (2D): $\mathcal{T}(\sigma), \mathcal{N}(\sigma)$



- \blacktriangleright Let $\gamma(t)$ be a cont. smooth diff. curve in \mathbb{R}^2
- Arc length: $\sigma(t) = \int_0^t \|\dot{\gamma}(\tau)\|_2 d\tau$
- $\blacktriangleright\,$ Can parameterize curve by arc length $\rightarrow \gamma(\sigma)$
- ► Tangent unit vector $\mathcal{T}(\sigma) := \gamma'(\sigma)$, Curvature vector $\mathcal{T}'(\sigma)$, Curvature $\kappa(\sigma) = \|\mathcal{T}'(\sigma)\| = (\varphi^{\gamma}(\sigma))'$ Normal unit vector $\mathcal{N}(\sigma) := \frac{\mathcal{T}'(\sigma)}{\|\mathcal{T}'(\sigma)\|}$
- Frenet-Serret frame (2D): $\mathcal{T}(\sigma), \mathcal{N}(\sigma)$
- Frenet-Serret frame yields an orthonormal basis along the reference curve

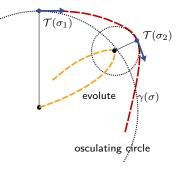


- \blacktriangleright Let $\gamma(t)$ be a cont. smooth diff. curve in \mathbb{R}^2
- Arc length: $\sigma(t) = \int_0^t \|\dot{\gamma}(\tau)\|_2 d\tau$
- $\blacktriangleright\,$ Can parameterize curve by arc length $\rightarrow \gamma(\sigma)$
- ► Tangent unit vector $\mathcal{T}(\sigma) := \gamma'(\sigma)$, Curvature vector $\mathcal{T}'(\sigma)$, Curvature $\kappa(\sigma) = \|\mathcal{T}'(\sigma)\| = (\varphi^{\gamma}(\sigma))'$ Normal unit vector $\mathcal{N}(\sigma) := \frac{\mathcal{T}'(\sigma)}{\|\mathcal{T}'(\sigma)\|}$
- Frenet-Serret frame (2D): $\mathcal{T}(\sigma), \mathcal{N}(\sigma)$
- Frenet-Serret frame yields an orthonormal basis along the reference curve
- Curvature defines the curve uniquely up to rigid motion

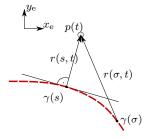


Frenet coordinate frame: Osculating circle and evolute

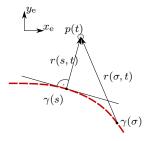
- The osculating circle is the circle that has the same tangent vector *T*(*σ*) and curvature *κ*(*σ*) at the point *γ*(*σ*)
- The curve that connects the center points of all osculating circles is the evolute



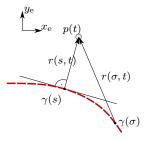
• Consider the motion of point p(t)



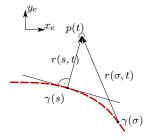
- Consider the motion of point p(t)
- The distance of point p(t) to the curve $\gamma(\sigma)$ is $r(\sigma,t) = p(t) \gamma(\sigma)$



- Consider the motion of point p(t)
- The distance of point p(t) to the curve $\gamma(\sigma)$ is $r(\sigma,t)=p(t)-\gamma(\sigma)$
- The closest point is $s(t) = \arg \min_{\sigma} \frac{1}{2} ||r(\sigma, t)||_2^2$

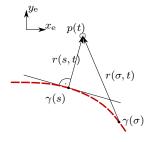


- Consider the motion of point p(t)
- The distance of point p(t) to the curve $\gamma(\sigma)$ is $r(\sigma,t) = p(t) \gamma(\sigma)$
- The closest point is $s(t) = \arg \min_{\sigma} \frac{1}{2} \|r(\sigma, t)\|_2^2$
- FONC: $0 = \frac{d}{d\sigma} \left(\frac{1}{2} \left\| r(\sigma, t) \right\|_2^2 \right) = r(s, t)^\top \mathcal{T}(s)$



- Consider the motion of point p(t)
- ► The distance of point p(t) to the curve $\gamma(\sigma)$ is $r(\sigma,t) = p(t) \gamma(\sigma)$
- The closest point is $s(t) = \arg \min_{\sigma} \frac{1}{2} ||r(\sigma, t)||_2^2$
- FONC: $0 = \frac{d}{d\sigma} \left(\frac{1}{2} \left\| r(\sigma, t) \right\|_2^2 \right) = r(s, t)^\top \mathcal{T}(s)$
- Assume, that we know s(t=0) is optimal, we enforce optimality along the trajectory, by

$$0 = \frac{d}{dt} r(s, t)^\top \mathcal{T}(s),$$

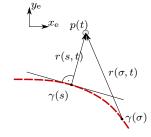


- Consider the motion of point p(t)
- ► The distance of point p(t) to the curve $\gamma(\sigma)$ is $r(\sigma,t) = p(t) \gamma(\sigma)$
- The closest point is $s(t) = \arg \min_{\sigma} \frac{1}{2} ||r(\sigma, t)||_2^2$
- FONC: $0 = \frac{d}{d\sigma} \left(\frac{1}{2} \left\| r(\sigma, t) \right\|_2^2 \right) = r(s, t)^\top \mathcal{T}(s)$
- \blacktriangleright Assume, that we know s(t=0) is optimal, we enforce optimality along the trajectory, by

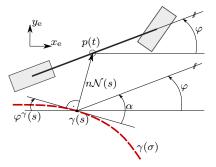
$$0 = \frac{d}{dt} r(s,t)^\top \mathcal{T}(s),$$

from which it follows

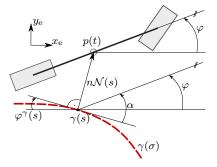
$$\dot{s}(t) = \frac{\left(\frac{dp(t)}{dt}\right)^{\top} \mathcal{T}(s)}{1 - \kappa(s)r(s,t)^{\top} \mathcal{N}(s)}$$



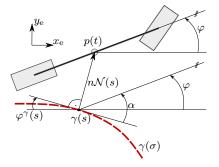
Recall vehicle model. Identify p(t) as the Cartesian vehicle position



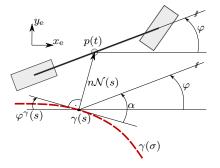
- Recall vehicle model. Identify p(t) as the Cartesian vehicle position
- Call s(t) longitudinal position state



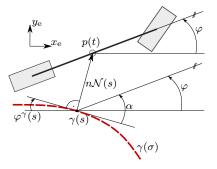
- Recall vehicle model. Identify p(t) as the Cartesian vehicle position
- Call s(t) longitudinal position state
- ► Call $\alpha(t) := \varphi(t) \varphi^{\gamma}(s(t))$ heading angle mismatch state



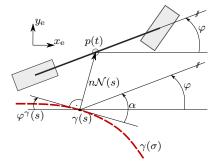
- Recall vehicle model. Identify p(t) as the Cartesian vehicle position
- ▶ Call s(t) longitudinal position state
- ► Call $\alpha(t) := \varphi(t) \varphi^{\gamma}(s(t))$ heading angle mismatch state
- Identify $v(t) = \left(\frac{dp(t)}{dt}\right)$ as the vehicle velocity



- Recall vehicle model. Identify p(t) as the Cartesian vehicle position
- ▶ Call s(t) longitudinal position state
- ► Call $\alpha(t) := \varphi(t) \varphi^{\gamma}(s(t))$ heading angle mismatch state
- Identify $v(t) = \left(\frac{dp(t)}{dt}\right)$ as the vehicle velocity
- ▶ Call $n(t) := r(s(t), t)^\top \mathcal{N}(s(t))$ lateral position state

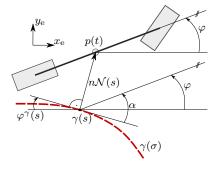


- Recall vehicle model. Identify p(t) as the Cartesian vehicle position
- ▶ Call s(t) longitudinal position state
- ► Call $\alpha(t) := \varphi(t) \varphi^{\gamma}(s(t))$ heading angle mismatch state
- Identify $v(t) = \left(\frac{dp(t)}{dt}\right)$ as the vehicle velocity
- ▶ Call $n(t) := r(s(t), t)^\top \mathcal{N}(s(t))$ lateral position state
- Frenet states $x^{c,F} = \mathcal{F}_{\gamma}(x^{c,C}) = [s, n, \alpha]^{\top} \in \mathbb{R}^3$



- Recall vehicle model. Identify p(t) as the Cartesian vehicle position
- ▶ Call s(t) longitudinal position state
- ► Call α(t) := φ(t) − φ^γ(s(t)) heading angle mismatch state
- Identify $v(t) = \left(\frac{dp(t)}{dt}\right)$ as the vehicle velocity
- ► Call $n(t) := r(s(t), t)^\top \mathcal{N}(s(t))$ lateral position state
- Frenet states $x^{\mathrm{c,F}} = \mathcal{F}_{\gamma}(x^{\mathrm{c,C}}) = [s, n, \alpha]^{\top} \in \mathbb{R}^3$
- Dynamics of FCF dependent states

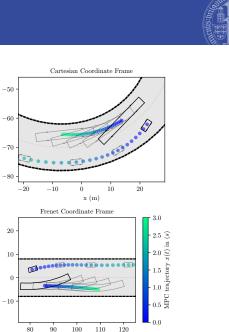
$$\dot{x}^{\mathrm{c,F}} = f^{\mathrm{c,F}}(x^{\mathrm{F}}, u) = \begin{bmatrix} \frac{v \cos(\alpha)}{1 - n\kappa(s)} \\ v \sin(\alpha) \\ \frac{v}{l} \tan(\delta) - \frac{\kappa(s)v \cos(\alpha)}{1 - n\kappa(s)} \end{bmatrix}$$



Modeling in two coordinate frames

Comparison

Feature	CCF	FCF
reference definition	×	1
boundary constraints	×	1
obstacle specification	1	X
disturbance specification	\checkmark	X



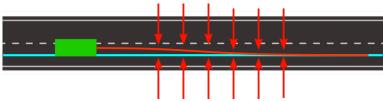
s (m)

y (m)

n (m)

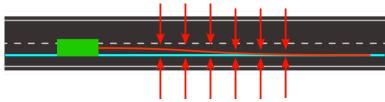
Frenet Coordinate Frame: Reference curve

- \blacktriangleright Transformation along a reference curve $\gamma(\sigma)$
- How to choose this curve?
 - Tracking of a center line

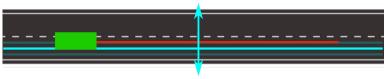


Frenet Coordinate Frame: Reference curve

- ▶ Transformation along a reference curve $\gamma(\sigma)$
- How to choose this curve?
 - Tracking of a center line

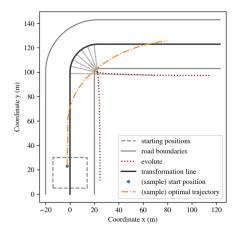


Racing: free to choose



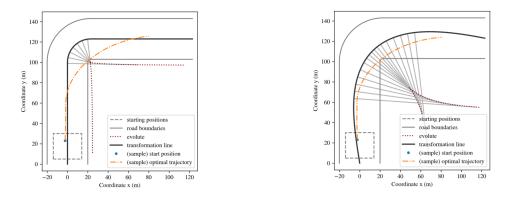
Frenet Coordinate Frame: Reference curve

Optimizing the Reference



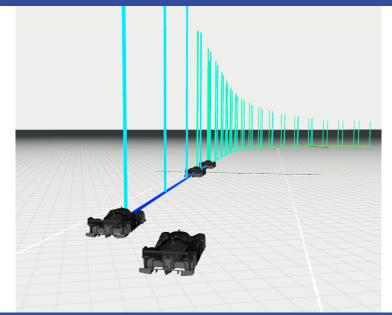
- The transformation has one big issue!
- Singular subspace at points $[s, n]^{\top}$, with $1 n\kappa(s) = 0$
- Usually no problem, since curvature is small $n\kappa(s) \ll 1$
- Can even use the free choice of the reference to our advantage

Solving a priori an optimization problem to obtain $\gamma(\sigma)$ that pushes the evolute outside and increases other favorable numercial properties for NMPC.¹



¹Rudolf Reiter and Moritz Diehl. "Parameterization Approach of the Frenet Transformation for Model Predictive Control of Autonomous Vehicles". In: *2021 European Control Conference (ECC)*. 2021, pp. 2414–2419. DOI: 10.23919/ECC54610.2021.9655053.

Optimization-Based Motion Planning and Control for Autonomous Driving Rudolf Reiter



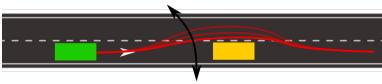
Problem Statement

Obstacle shape

Problem Statement

Obstacle shape

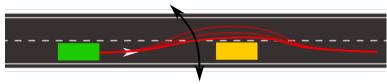
Nonconvex non-homeomorphic planning space



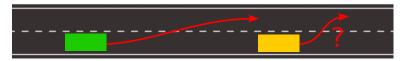
Problem Statement

Obstacle shape

Nonconvex non-homeomorphic planning space



Interaction and prediction



Collision avoidance on a straight road in Cartesian coordinates

- \blacktriangleright convex obstacle shape \checkmark
- \blacktriangleright state independent shape \checkmark

Collision avoidance on a curvy road in Cartesian coordinates

- \blacktriangleright convex obstacle shape \checkmark
- \blacktriangleright state independent shape \checkmark

Collision avoidance on a curvy road in Frenet coordinates

- nonconvex obstacle shape X
- state dependent shape X

Goal:

- ▶ Reference definition, boundary constraints → Frenet Coordinate Frame (FCF)
- \blacktriangleright Obstacle specification, Cartesian disturbance (e.g., wind force) \rightarrow Cartesian Coordinate Frame (CCF)

Conventional

Possible formulations of NMPC:

- ▶ Use only one CF, approximate and simplify non-smooth constraints
 - Dynamics model in CCF: approximate *F_γ* with artificial path state (MPCC) (Not reviewed here)
 - ▶ Dynamics model in FCF: convex over-approximate obstacles \rightarrow conventional
- Model dynamics in *one* CF, use \mathcal{F}_{γ} or $\mathcal{F}_{\gamma}^{-1}$ to obtain *other* states
- Model dynamics redundantly in both CFs

Direct elimination

Possible formulations of NMPC:

- Use only one CF, approximate and simplify non-smooth constraints
- Model dynamics in *one* CF, use \mathcal{F}_{γ} or $\mathcal{F}_{\gamma}^{-1}$ to obtain *other* states
 - **b** Dynamics model in CCF X: \mathcal{F}_{γ} is an nonlinear optimization problem by itself
 - ▶ Dynamics model in FCF \checkmark : $\mathcal{F}_{\gamma}^{-1}$ can be obtained efficiently \rightarrow direct elimination²

Model dynamics redundantly in both CFs

²Rudolf Reiter et al. "Frenet-Cartesian model representations for automotive obstacle avoidance within nonlinear MPC". In: *European Journal of Control* (2023), p. 100847. ISSN: 0947-3580.

Possible formulations of NMPC:

- Use only one CF, approximate and simplify non-smooth constraints
- Model dynamics in *one* CF, use \mathcal{F}_{γ} or $\mathcal{F}_{\gamma}^{-1}$ to obtain *other* states
- Model dynamics redundantly in *both* CFs
 - Lifting to higher dimension
 - ▶ Number of states n_x increases from 5 to 8 → lifting³

 $^{^{3}}$ Reiter et al., "Frenet-Cartesian model representations for automotive obstacle avoidance within nonlinear MPC".

NMPC Problem

Direct elimination

 $x^{\mathrm{F}} \in \mathbb{R}^5 \dots$ Frenet states, $x^{\mathrm{c},\mathrm{F}} \in \mathbb{R}^3 \dots$ Frenet position states, $\mathcal{P} \dots$ obstacle-free set θ ... hyperplane variables, $\mathcal{F}_{\gamma}^{-1}$... inverse Frenet transformation, $\Phi^{\mathrm{F}}(\cdot)$... integrator

$$\min_{\substack{x_{0}^{\mathrm{F}},\dots,x_{N}^{\mathrm{F}},\\u_{0},\dots,u_{N-1}\\\theta_{1},\dots,\theta_{n_{\mathrm{opp}}}}} \sum_{k=0}^{N-1} \|u_{k}\|_{R}^{2} + \|x_{k}^{\mathrm{F}} - x_{\mathrm{ref},k}^{\mathrm{F}}\|_{Q}^{2} + \|x_{N}^{\mathrm{F}} - x_{\mathrm{ref},N}^{\mathrm{F}}\|_{Q_{N}}^{2}$$
s.t.
$$x_{0}^{\mathrm{F}} = \hat{x}_{0}^{\mathrm{F}},$$

$$x_{i+1}^{\mathrm{F}} = \Phi^{\mathrm{F}}(x_{i}^{\mathrm{F}}, u_{i}, \Delta t), \quad i = 0, \dots, N-1,$$

$$\underline{u} \le u_{i} \le \overline{u}, \qquad i = 0, \dots, N-1,$$

$$\underline{x}^{\mathrm{F}} \le x_{i}^{\mathrm{F}} \le \overline{x}^{\mathrm{F}}, \qquad i = 0, \dots, N-1,$$

$$\underline{x}^{\mathrm{C},\mathrm{C}} \le \mathcal{F}_{\gamma}^{-1}(x^{\mathrm{C},\mathrm{F}}) \le \overline{x}^{\mathrm{c},\mathrm{C}}, i = 0, \dots, N,$$

$$v_{N} \le \overline{v}_{N},$$

$$\mathcal{F}_{\gamma}^{-1}(x^{\mathrm{c},\mathrm{F}}) \in \mathcal{P}(x_{i}^{\mathrm{c},\mathrm{opp},\mathrm{j}}, \theta_{j}), \qquad i = 0, \dots, N-1,$$

$$j = 1, \dots, n_{\mathrm{opp}}.$$

 θ

NMPC Problem

Lifted

 $x^{\rm F} \in \mathbb{R}^5 \dots$ Frenet states, $x^{\rm d} \in \mathbb{R}^8 \dots$ lifted states, $\mathcal{P} \dots$ obstacle-free set $\theta \dots$ hyperplane variables, $\Phi^{\rm d}(\cdot) \dots$ model integration function

$$\min_{\substack{x_{0}^{d},...,x_{N}^{d},\\u_{0},...,u_{N-1}\\\theta_{1},...,\theta_{n_{opp}}}} \sum_{k=0}^{N-1} \|u_{k}\|_{R}^{2} + \|x_{k}^{F} - x_{ref,k}^{F}\|_{Q}^{2} + \|x_{N}^{F} - x_{ref,N}^{F}\|_{Q_{N}}^{2}$$
s.t.
$$x_{0}^{d} = \hat{x}_{0}^{d},$$

$$x_{i+1}^{d} = \Phi^{d}(x_{i}^{d}, u_{i}, \Delta t), i = 0, \dots, N-1,$$

$$\underline{u} \le u_{i} \le \overline{u}, \qquad i = 0, \dots, N-1,$$

$$\underline{x}^{d} \le x_{i}^{d} \le \overline{x}^{d}, \qquad i = 0, \dots, N-1,$$

$$\underline{u}^{lat} \le a_{lat}(x_{i}^{d}) \le \overline{a}^{lat}, i = 0, \dots, N,$$

$$v_{N} \le \overline{v}_{N},$$

$$x_{i}^{c,C} \in \mathcal{P}(x_{i}^{c,opp,j}, \theta_{j}), \ i = 0, \dots, N-1,$$

$$j = 1, \dots, n_{opp}.$$

Setup:

- Simulation on randomized scenarios with three obstacles to overtake
- acados, 6s horizon length, 50 discr. points
- Obstacle formulations:
 - Ellipsoids
 - Covering circles (1,3,5,7)
 - Separating hyper-planes
- Coordinate formulations:
 - Conventional (over-approximation)
 - Direct elimination
 - Lifted ODE

Evaluation:

- Computation time
- Maximum progress

Results truck-sized

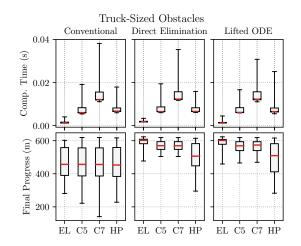


Figure: Box-plot comparison of the NMPC solution timings for each real-time iteration and the final progress after 20 seconds for different obstacle formulations for truck-sized vehicles.

Computation times

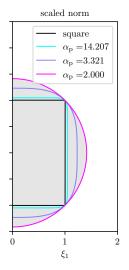
	Computation Conventional	n times (ms) for truck- Direct Elimination		sized obstacles Lifted ODE			
EL C5 C7 HP	$\begin{array}{c} 1.5 \pm 0.4 \\ 7.2 \pm 1.9 \\ 14.0 \pm 3.2 \\ 7.5 \pm 1.5 \end{array}$		28.9% 5.5% -0.1% -0.1%	$\begin{array}{c} {\bf 1.4 \pm 0.3} \\ {\bf 7.2 \pm 1.8} \\ {\bf 13.9 \pm 2.9} \\ {\bf 7.4 \pm 1.7} \end{array}$	$-6.6\% \\ -0.0\% \\ -0.4\% \\ -1.6\%$		
car-sized obstacles							
EL C1 C3 HP	$ \begin{vmatrix} 1.5 \pm 0.5 \\ 1.4 \pm 0.4 \\ 3.6 \pm 1.1 \\ 8.0 \pm 2.3 \end{vmatrix} $	$\begin{array}{c} 2.0 \pm 0.4 \\ 1.9 \pm 0.4 \\ 4.0 \pm 1.0 \\ 7.9 \pm 1.9 \end{array}$	$29.6\%\ 34.0\%\ 12.4\%\ -0.6\%$	$\begin{array}{c} \mathbf{1.4 \pm 0.4} \\ 1.4 \pm 0.4 \\ 3.6 \pm 1.1 \\ 7.7 \pm 2.0 \end{array}$	$\begin{array}{r} -5.7\% \\ -3.5\% \\ 0.6\% \\ -4.0\% \end{array}$		

Table: Mean and standard deviation of computation times for different scenarios, obstacle formulations and lifting formulations. Additionally, the difference in percent to the conventional formulation is given.

Collision avoidance constraint can be represented as $\infty\text{-norm}$

$\infty\text{-norm:}$ Problem with linearization - we create distinct local minima

2-norm: takes a major share of the free planning space

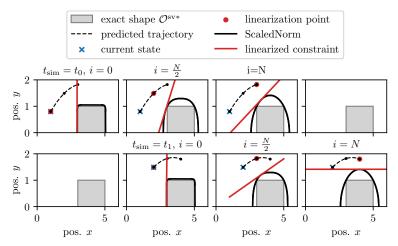


• Norm obstacle constraint in scaled coordinates ξ given by

$$1 \ge o^{\mathbf{p}}(\boldsymbol{\xi};\boldsymbol{\alpha}_{\mathbf{p}}) = \left(\frac{1}{n}\sum_{i=1}^{n} |\boldsymbol{\xi}|^{\boldsymbol{\alpha}_{\mathbf{p}}}\right)^{\frac{1}{\boldsymbol{\alpha}_{\mathbf{p}}}}$$

- Homotopies are often used to successively add nonlinearity
- \blacktriangleright Solve sequence of optimization problems and increase norm value $\alpha_{\rm p}$ in each problem
- Problem: We want to use RTI, i.e., only solve one QP in each iteration!

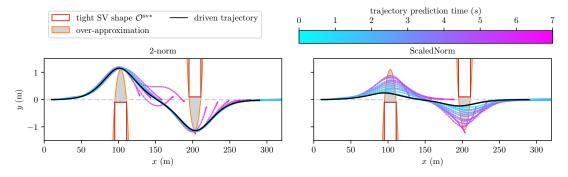
Tighten obstacle along prediction horizon towards closer predictions



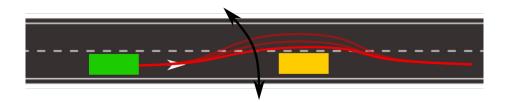
⁴Rudolf Reiter et al. *Progressive Smoothing for Motion Planning in Real-Time NMPC*. 2024. arXiv: 2403.01830 [eess.SY].

Optimization-Based Motion Planning and Control for Autonomous Driving Rudolf Reiter

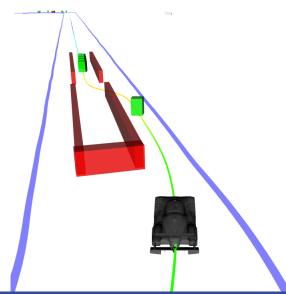
Vehicle passing two obstacles with 2-norm vs. progressive smoothing (scaled norm) Planned trajectories in each RTI step:



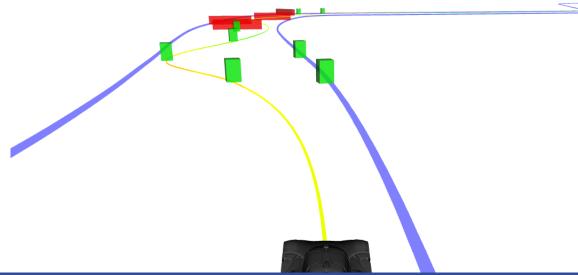
Challenge 2: Nonconvex non-homeomorphic planning space



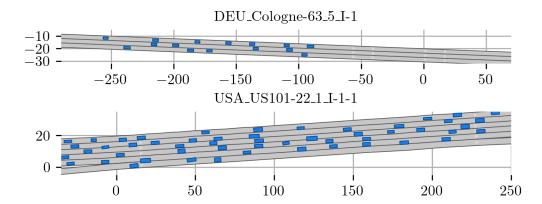
Challenge 2: Example 1



Challenge 2: Example 2



Challenge 2: Example 3

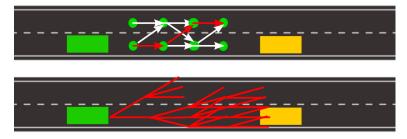


Global optimization for obstacle avoidance

Mixed-integer optimization

Gradient-based optimization only works for local solutions in continuous space

Approach 1: search in a discrete space



► Approach 2 : search in a mixed continuous-discrete space mixed integer optimization

- Appealing mathematical concept: discrete and continuous controls and states
- Building on powerful commercial solvers (Gurobi, CPLEX, ...)
- solves to global optimum

Mixed-integer optimization for motion planning

- Exponential worst-case computation time
- Reasonable performance only for mixed-integer quadratic programs

Obtain linear model either through linearization or point-mass model

⁵Rien Quirynen, Sleiman Safaoui, and Stefano Di Cairano. *Real-time Mixed-Integer Quadratic Programming* for Vehicle Decision Making and Motion Planning. 2023. arXiv: 2308.10069 [math.OC].

- Obtain linear model either through linearization or point-mass model
- Linear boundary constraints through planning in Frenet frame

⁵Quirynen, Safaoui, and Cairano, *Real-time Mixed-Integer Quadratic Programming for Vehicle Decision Making and Motion Planning.*

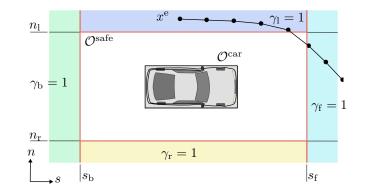
- Obtain linear model either through linearization or point-mass model
- Linear boundary constraints through planning in Frenet frame
- Linear dynamic constraints require conservativeness

⁵Quirynen, Safaoui, and Cairano, *Real-time Mixed-Integer Quadratic Programming for Vehicle Decision Making and Motion Planning.*

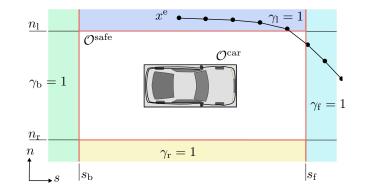
- Obtain linear model either through linearization or point-mass model
- Linear boundary constraints through planning in Frenet frame
- Linear dynamic constraints require conservativeness
- \blacktriangleright Defining convex disjunctive free spaces \rightarrow integer variables

Optimization-Based Motion Planning and Control for Autonomous Driving Rudolf Reiter

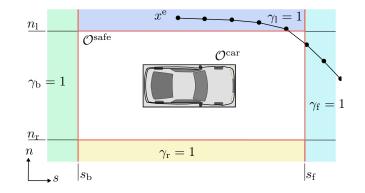
⁵Quirynen, Safaoui, and Cairano, *Real-time Mixed-Integer Quadratic Programming for Vehicle Decision Making and Motion Planning.*



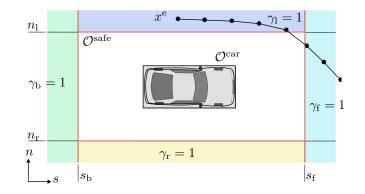
▶ Over-approximating obstacle \mathcal{O}^{car} by \mathcal{O}^{safe}



- \blacktriangleright Over-approximating obstacle $\mathcal{O}^{\mathrm{car}}$ by $\mathcal{O}^{\mathrm{safe}}$
- Split into 4 convex regions (left, right, front, back)



- \blacktriangleright Over-approximating obstacle $\mathcal{O}^{\mathrm{car}}$ by $\mathcal{O}^{\mathrm{safe}}$
- Split into 4 convex regions (left, right, front, back)
- ▶ Assign binary indicator variables $\gamma_l, \gamma_r, \gamma_f, \gamma_b \in \{0, 1\}$



- ▶ Over-approximating obstacle \mathcal{O}^{car} by \mathcal{O}^{safe}
- Split into 4 convex regions (left, right, front, back)
- Assign binary indicator variables $\gamma_l, \gamma_r, \gamma_f, \gamma_b \in \{0, 1\}$
- ▶ Planning trajectory $x^{e} = [x_{0}^{e}, \dots, x_{N}^{e}]$ with $x_{i}^{e} \notin \mathcal{O}^{\text{safe}}$

Binary variables to constrain region⁶

- Given compact set $\mathcal{X} \subset \mathbb{R}$ and continuous function $f : \mathcal{X} \to \mathbb{R}$
- Find bounds $\overline{M} \ge \max_{x \in \mathcal{X}} f(x)$ and $\underline{M} \le \min_{x \in \mathcal{X}} f(x)$

Property

The implication $[f(x) > 0] \implies [\gamma = 1]$ of a binary variable $\gamma \in \{0, 1\}$ that gets activated if constraint $f(x) \ge 0$ is valid, is formulated as

$$f(x) \le \overline{M}\gamma.$$

Property

The implication $[\gamma = 1] \implies [f(x) \ge 0]$ of a binary variable $\gamma \in \{0, 1\}$ that activates constraint $f(x) \ge 0$, is formulated as

 $f(x) \ge \underline{M}(1-\gamma).$

 \blacktriangleright construct disjunction for each region and add for each obstacle j and time k the constraint

 $(\gamma_{\rm r})_{j,k} + (\gamma_{\rm l})_{j,k} + (\gamma_{\rm f})_{j,k} + (\gamma_{\rm b})_{j,k} = 1, \quad j = 1, \dots, N_{\rm obs}, \ k = 1, \dots, N_{\rm obs}$

▶ Requires 4 binary variables per obstacle per time step $(N_{\rm bin} = 4N_{\rm obs}N) \rightarrow$ too many

⁶H. P. Williams. *Model building in mathematical programming*. Hoboken, N.J.: Wiley, 2013. ISBN: 9781118443330 1118443330.

Simplifying the problem further

Static obstacle?

- 1. Spatial reformulation of dynamics⁷
- 2. Binary decisions only in lateral dimension⁸ $\rightarrow N'_{\rm bin} = \mathcal{O}(N_{\rm obs})$, before $N_{\rm bin} = \mathcal{O}(N_{\rm obs}N)$

⁷Robin Verschueren et al. "Time-optimal Race Car Driving using an Online Exact Hessian based Nonlinear MPC Algorithm". In: 2021 European Control Conference (ECC). 2016.

⁸Rudolf Reiter et al. "Mixed-integer optimization-based planning for autonomous racing with obstacles and rewards". In: *IFAC-PapersOnLine* 54.6 (2021). 7th IFAC Conference on NMPC, pp. 99–106. ISSN: 2405-8963.

Simplifying the problem further

Static obstacle?

- 1. Spatial reformulation of dynamics⁷
- 2. Binary decisions only in lateral dimension⁸ $\rightarrow N'_{\rm bin} = \mathcal{O}(N_{\rm obs})$, before $N_{\rm bin} = \mathcal{O}(N_{\rm obs}N)$
- Multi-lane road environment?
 - 1. Optimize for transitions in the spatio-temporal coordinates (submitted to IEEE TIV)
 - 2. Binary decisions related to gaps on each lane $\rightarrow N_{\rm bin}'' = \mathcal{O}(N_{\rm obs} + N)$

⁷Verschueren et al., "Time-optimal Race Car Driving using an Online Exact Hessian based Nonlinear MPC Algorithm".

 $^{^8 \}mbox{Reiter}$ et al., "Mixed-integer optimization-based planning for autonomous racing with obstacles and rewards".

Simplifying the problem further

Static obstacle?

- 1. Spatial reformulation of dynamics⁷
- 2. Binary decisions only in lateral dimension⁸ $\rightarrow N'_{\rm bin} = \mathcal{O}(N_{\rm obs})$, before $N_{\rm bin} = \mathcal{O}(N_{\rm obs}N)$
- Multi-lane road environment?
 - 1. Optimize for transitions in the spatio-temporal coordinates (submitted to IEEE TIV)
 - 2. Binary decisions related to gaps on each lane $\rightarrow N_{\rm bin}'' = \mathcal{O}(N_{\rm obs} + N)$

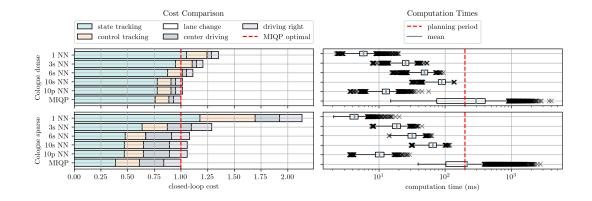
Otherwise?

- 1. Use machine learning to replace combinatorial part of optimizer (submitted to IEEE TCST)
- 2. Train predictor for binary variables
- 3. Fix binary variables
- 4. Solve remaining QP

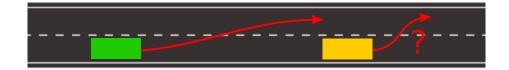
⁸Reiter et al., "Mixed-integer optimization-based planning for autonomous racing with obstacles and rewards".

⁷Verschueren et al., "Time-optimal Race Car Driving using an Online Exact Hessian based Nonlinear MPC Algorithm".

Results: Learning of combinatorial part of MIQP

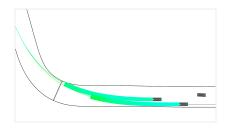


Challenge 3: Prediction and interaction



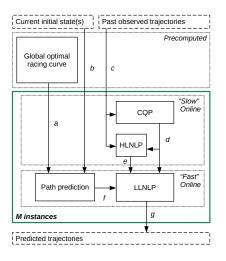
Obstacle prediction by inverse optimal control⁹

- Including a physics-based parametric model of the opponent inducing a racing intention
- The racing intention is modeled by means of a parametric nonlinear low-level program (LLNLP) for progress maximization
- The estimation of the parameters is performed by solving an inverse optimal control (IOC) problem, which enforces the optimality conditions for the LLNLP as constraints
- Output: Predicted trajectories (non-interactive)



⁹Rudolf Reiter et al. "An Inverse Optimal Control Approach for Trajectory Prediction of Autonomous Race Cars". In: *2022 European Control Conference (ECC)*. 2022, pp. 146–153. DOI: 10.23919/ECC55457.2022.9838100.

Architecture

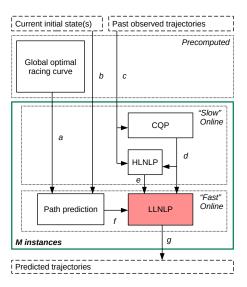


- a: global racing path
- b: initial state \bar{x}_0
- c: trajectory data samples
- d: constraints a_{\max}
- e: weights w
- f: Cartesian coordinates and

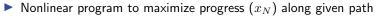
curvature parameters of blended path segment $\bar{\kappa}$

g: predicted trajectory

Low-Level Program for Trajectory Prediction (LLNLP)



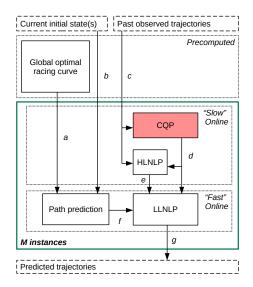
Low-Level Program for Trajectory Prediction (LLNLP)



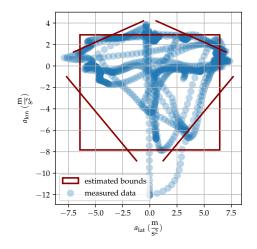
- Weights Q, R, q_N estimated by HLNLP
- ▶ Acceleration constraints $h_a(x_k, \bar{\kappa}, a_{\max})$ estimated by CQP

$$\begin{array}{ll}
\min_{\substack{x_0,\ldots,x_N,\\ U_0,\ldots,U_{N-1}\\s_0,\ldots,s_N}} &\sum_{k=0}^{N-1} \|x_k - x_k^{\mathrm{r}}\|_{2,Q}^2 + \|U_k - U_k^{\mathrm{r}}\|_{2,R}^2 + q_N^{\mathrm{T}} x_N + \sum_{k=0}^N \alpha_1 \mathbf{1}^{\mathrm{T}} s_{\mathrm{LL},k} + \alpha_2 \|s_{\mathrm{LL},k}\|_2^2 \\ \text{s.t.} & x_0 = \bar{x}_0 \\ & x_{k+1} = F(x_k, U_k, \Delta t), \qquad k = 0, \ldots, N-1 \\ & \frac{x}{\leq} x_k \leq \bar{x} \\ & 0 \leq h_a(x_k, \bar{\kappa}, a_{\mathrm{max}}) + s_{\mathrm{LL},k} \\ & 0 \leq s_{\mathrm{LL},k}, \qquad k = 0, \ldots, N, \end{array}$$

Quadratic Program for Constraint Estimation

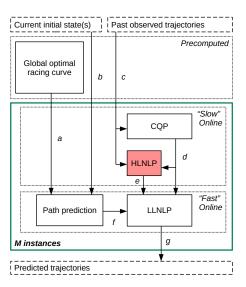


Quadratic Program for Constraint Estimation



- Constraints are estimated separatly from the weights
- Symmetric polytope with 8 bounds (5 independent) fitted to data
- Iterative QP, with previously estimated value as "arrival term" (moving horizon estimation)

High Level Program for Weight Estimation (HLNLP)



High Level Program for Weight Estimation (HLNLP)

- ▶ We optimize for the weights $w = [Q, R, q_N]$ of the LLNLP
- L2 loss on observed trajectories and predicted trajectories
- We use only states x and controls u that are solutions of the LLNLP $P_{LL}(w, \bar{x}_0, \bar{\kappa}, a_{max})$
- \blacktriangleright \rightarrow bi-level optimization problem

$$\min_{\substack{X, U, w \\ \text{s.t.}}} \sum_{k=1}^{N_T - 1} \|x_k - \bar{x}_k\|_{2, Q_k}^2 + \|w - \hat{w}\|_{2, P^{-1}}^2$$

s.t. $X, U \in \operatorname{argmin}_{\operatorname{LL}}(w, \bar{x}_0, \bar{\kappa}, a_{\max})$
 $w \succeq 0$

- ▶ We use the the KKT conditions of the LLNLP as constraints in the HLNLP
- Homotopy on penalized relaxation
- Arrival cost with weights P^{-1}

Evaluation

Setup

The simulation:

- Simulation framework with dynamic vehicle model
- Comparisons with Notebook
- Hardware-in-the-loop for competitions
- Las Vegas race track
- 1k randomly parameterized test runs
- (Due Covid currently only simulated races)

The setup:

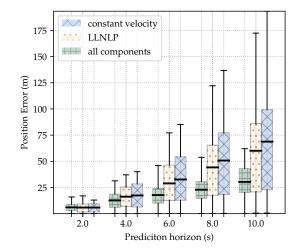
- ▶ Hardware: HP Elitebook, Intel Core i7-8550 CPU (1.8 GHz) and Nvidia Drive PX2
- The used frequency for the synchronous LLNLP was 10 Hz
- The HLNLP and CQP ran asynchronously
- 200 seconds until HLNLP converged

Table: Solver timing statistics	(Nvidia Drive PX2)
---------------------------------	--------------------

Component	Solver	$t_{ m max}$ (ms)	$t_{\mathrm{ave}} \; (ms)$	fail rate (%)
PP	none	< 1	< 1	0
CQP	OSQP	15.5	8.1	0
HLNLP	IPOPT	6237	520	5
LLNLP	acados, HPIPM	2748	91	0.2

Results

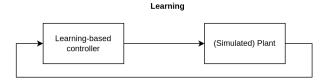
Final Prediction Errors by Prediction Horizon (converged)



- \blacktriangleright Strategic planning of autonomous race cars \rightarrow blocking agents, efficient overtaking
- Other agents have static policies (otherwise game theoretic problem)
- Approach 1: use optimization-based control (NMPC)
- Problem: complex prediction model inside optimization problem
- Approach 2: use reinforcement learning
- Problem: can hardly account for safety, loads of data needed for simple maneuvers
- ▶ Our approach¹⁰: Combine reinforcement learning and NMPC hierarchically

¹⁰Rudolf Reiter et al. "A Hierarchical Approach for Strategic Motion Planning in Autonomous Racing". In: 2023 European Control Conference (ECC). 2023, pp. 1–8. DOI: 10.23919/ECC57647.2023.10178143.

The safety filter uses an NLP to project controls onto safe sets

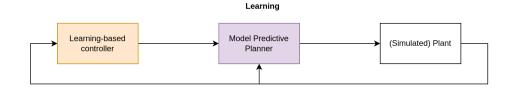


¹¹Kim Peter Wabersich and Melanie N. Zeilinger. "A predictive safety filter for learning-based control of constrained nonlinear dynamical systems". In: *Automatica* 129 (2021), p. 109597. ISSN: 0005-1098. DOI: https://doi.org/10.1016/j.automatica.2021.109597.

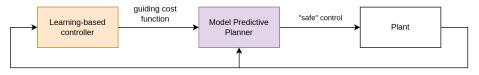
Optimization-Based Motion Planning and Control for Autonomous Driving Rudolf Reiter

Relation to the safety filter

Our approach



Deployment



Our approach

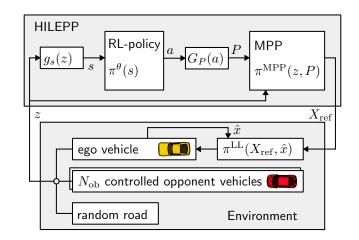
Safety Filter

HILEPP (ours)

$$\begin{array}{ll} \min_{X,U} & \|u_0 - \bar{a}\|_R^2 & \min_{X,U} & L(X,U,a) \\ \text{s.t.} & x_0 = \bar{x}_0, \quad x_N \in \mathcal{S}^{\mathsf{t}} & \text{s.t.} & x_0 = \hat{x}_0, \quad x_N \in \mathcal{S}^{\mathsf{t}} \\ & x_{i+1} = F(x_i,u_i), \quad i = 0, \dots, N-1 & x_{i+1} = F(x_i,u_i), \quad i = 0, \dots, N-1 \\ & x_i \in \mathcal{X}, u_i \in \mathcal{U}, \quad i = 0, \dots, N-1 & x_i \in \mathcal{X}, u_i \in \mathcal{U}, \quad i = 0, \dots, N-1, \end{array}$$

Architecture

Details



Invariance pre-conditioning function $g_s(z)$ sets inputs s to RL policy $a = \pi^{\Theta}(s)$. Function $G_P(a)$ transforms RL actions a to MPP parameters P. Policy $\pi^{\text{MPP}}(z, P)$ solves NLP and outputs safe reference X^{ref} .

NMPC (MPP) formulation

Gerneral

- MPP is a NMPC used as planner
- Kinematic vehicle model in Frenet coordinate frame
- Obstacle avoidance with ellipses circles
- Obstacle prediction in two modes (Defined according to racing rules):
 - ► Follower: generously assuming straight linear motion in Frenet coordinate frame
 - Leader: evasively allowing only decelerating linear motion

NMPC (MPP) formulation

Cost function

Cost parameterization through RL actions:

$$G_P(a): a \to \left(\xi_{\mathrm{ref},0}(a), \dots, \xi_{\mathrm{ref},N}(a), Q_{\mathrm{w}}(a)\right)$$

$$\xi_{\mathrm{ref},k}(a) = \begin{bmatrix} 0 & n & 0 & v & 0 \end{bmatrix}^\top \in \mathcal{R}^{n_x}$$

$$Q_{\mathrm{w}}(a) = \mathrm{diag}(\begin{bmatrix} 0 & w_n & 0 & w_v & 0 \end{bmatrix})$$

NMPC (MPP) parameterized cost:

$$L(X, U, a, \Xi) = \sum_{k=0}^{N-1} \|x_k - \xi_{\text{ref}, k}(a)\|_{Q_w(a)}^2 + \|u_k\|_R^2 + \|x_N - \xi_{\text{ref}, N}(a)\|_{Q^t}^2 + \sum_{k=0}^N \|\sigma_k\|_{Q_{\sigma, 2}}^2 + |q_{\sigma, 1}^\top \sigma_k|.$$

We compare two action vectors (with or without setting weights):

▶ HILEPP-I:
$$a_{\mathrm{I}} := [n, v]^{\top}$$

▶ HILEPP-II: $a_{\mathrm{II}} := [n, v, w_n, w_v]^{\top}$

Reinforcement Learning

General

- Markov assumption, state space S, action space A, looking for policy π^θ : S → A, reward function R : S × A → ℝ
- \blacktriangleright We use a *soft actor critic* algorithm with actor π^{θ} and a critic Q^{ϕ}

Specific

▶ Pre-processing function from ego state $s = [n, v, \alpha]^{\top}$, road curvature evaluations $\kappa(\cdot)$ and obstacle states z to (partly) invariant RL states $s_{ob_i} = [\zeta_{ob_i} - \zeta, n_{ob_i}, v_{ob_i}, \alpha_{ob_i}]^{\top}$

$$s_k = g_s(z_k) = [\kappa(\zeta + d_i), \dots, \kappa(\zeta + d_N), s^{\top}, s_{\mathrm{ob}_1}^{\top}, \dots, s_{\mathrm{ob}_N}^{\top}]^{\top}$$

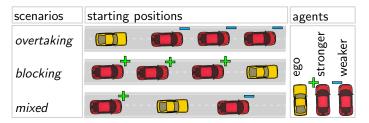
 \blacktriangleright We use the reward for center line speed \dot{s} and the total rank, with

$$R(s,a) = \frac{\dot{\zeta}}{200} + \sum_{i=1}^{N_{\rm ob}} \mathbf{1}_{\zeta_k > \zeta_k^{\rm ob}_i}$$

Evaluation

Setup

- \blacktriangleright Training of $\sim 10^6$ steps in randomized simulated scenarios
- Only the ego agent is trained, opponents only use MPP
- Three different scenario types



- Comparison of
 - MPP
 - RL
 - HILEPP-I (only reference states)
 - HILEPP-II (reference states and weights)

400

Average Return

HILEPP II

600

RL

800

-- MPP

Evaluation

Overtaking

Blocking

Mixed

0

200

HILEPP I

- pure RL struggled to keep up even with MPP
- overtaking does not require much strategy
- ► HILEPP-II performs better than HILEPP-I

Module	$Mean\pm Std.$	Max
MPP	5.45 ± 2.73	8.62
RL policy	0.13 ± 0.01	0.26
HILEPP-I	6.90 ± 3.17	9.56
HILEPP-II	7.41 ± 2.28	9.21

Table: Computation times (ms) of modules.

Conclusion and discussion

- Motion planning with collision avoidance is challenging due to
 - nonconvexity
 - interaction
 - uncertainty
 - safety requirements
 - real-time requirements
- Approaches from different communities
 - Continuous optimization
 - Discrete optimization \rightarrow graph search, tree search
 - Mixed-integer optimization
 - Reinforcement learning
- ▶ It seems promising to combine approaches based on individual strengths
 - MPC+RL
 - Safety filter
 - Tailored mixed-integer programming
 - Learning-based mixed-integer programming
 - ► MINLP?

Thanks to all supervisors and colleagues!

Thank you for your attention!