
Optimization-Based Motion Planning and
Control for Autonomous Driving

Rudolf Reiter

Systems Control and Optimization Laboratory, University of Freiburg

IfA Coffee Talk
ETH Zürich
June 7, 2024

Outline

1. Personal introduction

2. Vehicle model in the Frenet coordinate frame

3. Challenges with obstacle avoidance

3.1 obstacle shape
3.2 non homeomorphic planning space
3.3 obstacle prediction and interaction

Optimization-Based Motion Planning and Control for Autonomous Driving Rudolf Reiter 1

Personal Introduction
Salzburg, Austria: until 2009

Salzburg

Optimization-Based Motion Planning and Control for Autonomous Driving Rudolf Reiter 2

Personal Introduction
Graz, Austria: until 2021

Graz

Optimization-Based Motion Planning and Control for Autonomous Driving Rudolf Reiter 3

Personal Introduction
Freiburg, Germany: until ∼2024

Freiburg

Optimization-Based Motion Planning and Control for Autonomous Driving Rudolf Reiter 4

Vehicle Model

Optimization-Based Motion Planning and Control for Autonomous Driving Rudolf Reiter 5

Modeling in two coordinate frames
Comparison

−20 −10 0 10 20

x (m)

−80

−70

−60

−50

y
(m

)

Cartesian Coordinate Frame

80 90 100 110 120

s (m)

−10

0

10

20

n
(m

)

Frenet Coordinate Frame

0.0

0.5

1.0

1.5

2.0

2.5

3.0

M
P

C
tr

a
je

ct
o
ry
x

(t
)

in
(s

)

−20 −10 0 10 20

x (m)

−80

−70

−60

−50

y
(m

)

Cartesian Coordinate Frame

80 90 100 110 120

s (m)

−10

0

10

20

n
(m

)

Frenet Coordinate Frame

0.0

0.5

1.0

1.5

2.0

2.5

3.0

M
P

C
tr

a
je

ct
or

y
x

(t
)

in
(s

)

Optimization-Based Motion Planning and Control for Autonomous Driving Rudolf Reiter 6

Single-track model in Cartesian coordinate frame (CCF)

I Cartesian states xc,C = [px, py, ϕ]> ∈ R3

I Some states are CF independent:
x¬c = [v, δ]> ∈ R2

I Full state vector: xC = [xc,C> x¬c>]>

I Inputs CF independent: u = [F d r]> ∈ R2

I Dynamics of CCF dependent states

ẋc,C = f c,C(xC, u) =

v cos(ϕ)
v sin(ϕ)
v
l tan(δ)

I Dynamics of CCF independent states

ẋ¬c = f¬c(x¬c, u, ϕ) =[
1
m (F d − Fwind(v, ϕ)− F roll(v))

r

]

lr

lf
δ

ϕ

ϕ

CG
vev

−F resev ewind

ϕwind

xe

yeyv

F dev

xv

Optimization-Based Motion Planning and Control for Autonomous Driving Rudolf Reiter 7

Single-track model in Cartesian coordinate frame (CCF)

I Cartesian states xc,C = [px, py, ϕ]> ∈ R3

I Some states are CF independent:
x¬c = [v, δ]> ∈ R2

I Full state vector: xC = [xc,C> x¬c>]>

I Inputs CF independent: u = [F d r]> ∈ R2

I Dynamics of CCF dependent states

ẋc,C = f c,C(xC, u) =

v cos(ϕ)
v sin(ϕ)
v
l tan(δ)

I Dynamics of CCF independent states

ẋ¬c = f¬c(x¬c, u, ϕ) =[
1
m (F d − Fwind(v, ϕ)− F roll(v))

r

]

lr

lf
δ

ϕ

ϕ

CG
vev

−F resev ewind

ϕwind

xe

yeyv

F dev

xv

Optimization-Based Motion Planning and Control for Autonomous Driving Rudolf Reiter 7

Single-track model in Cartesian coordinate frame (CCF)

I Cartesian states xc,C = [px, py, ϕ]> ∈ R3

I Some states are CF independent:
x¬c = [v, δ]> ∈ R2

I Full state vector: xC = [xc,C> x¬c>]>

I Inputs CF independent: u = [F d r]> ∈ R2

I Dynamics of CCF dependent states

ẋc,C = f c,C(xC, u) =

v cos(ϕ)
v sin(ϕ)
v
l tan(δ)

I Dynamics of CCF independent states

ẋ¬c = f¬c(x¬c, u, ϕ) =[
1
m (F d − Fwind(v, ϕ)− F roll(v))

r

]

lr

lf
δ

ϕ

ϕ

CG
vev

−F resev ewind

ϕwind

xe

yeyv

F dev

xv

Optimization-Based Motion Planning and Control for Autonomous Driving Rudolf Reiter 7

Single-track model in Cartesian coordinate frame (CCF)

I Cartesian states xc,C = [px, py, ϕ]> ∈ R3

I Some states are CF independent:
x¬c = [v, δ]> ∈ R2

I Full state vector: xC = [xc,C> x¬c>]>

I Inputs CF independent: u = [F d r]> ∈ R2

I Dynamics of CCF dependent states

ẋc,C = f c,C(xC, u) =

v cos(ϕ)
v sin(ϕ)
v
l tan(δ)

I Dynamics of CCF independent states

ẋ¬c = f¬c(x¬c, u, ϕ) =[
1
m (F d − Fwind(v, ϕ)− F roll(v))

r

]

lr

lf
δ

ϕ

ϕ

CG
vev

−F resev ewind

ϕwind

xe

yeyv

F dev

xv

Optimization-Based Motion Planning and Control for Autonomous Driving Rudolf Reiter 7

Single-track model in Cartesian coordinate frame (CCF)

I Cartesian states xc,C = [px, py, ϕ]> ∈ R3

I Some states are CF independent:
x¬c = [v, δ]> ∈ R2

I Full state vector: xC = [xc,C> x¬c>]>

I Inputs CF independent: u = [F d r]> ∈ R2

I Dynamics of CCF dependent states

ẋc,C = f c,C(xC, u) =

v cos(ϕ)
v sin(ϕ)
v
l tan(δ)

I Dynamics of CCF independent states

ẋ¬c = f¬c(x¬c, u, ϕ) =[
1
m (F d − Fwind(v, ϕ)− F roll(v))

r

]

lr

lf
δ

ϕ

ϕ

CG
vev

−F resev ewind

ϕwind

xe

yeyv

F dev

xv

Optimization-Based Motion Planning and Control for Autonomous Driving Rudolf Reiter 7

Single-track model in Cartesian coordinate frame (CCF)

I Cartesian states xc,C = [px, py, ϕ]> ∈ R3

I Some states are CF independent:
x¬c = [v, δ]> ∈ R2

I Full state vector: xC = [xc,C> x¬c>]>

I Inputs CF independent: u = [F d r]> ∈ R2

I Dynamics of CCF dependent states

ẋc,C = f c,C(xC, u) =

v cos(ϕ)
v sin(ϕ)
v
l tan(δ)

I Dynamics of CCF independent states

ẋ¬c = f¬c(x¬c, u, ϕ) =[
1
m (F d − Fwind(v, ϕ)− F roll(v))

r

]

lr

lf
δ

ϕ

ϕ

CG
vev

−F resev ewind

ϕwind

xe

yeyv

F dev

xv

Optimization-Based Motion Planning and Control for Autonomous Driving Rudolf Reiter 7

Frenet coordinate frame (FCF)

I Let γ(t) be a cont. smooth diff. curve in R2

I Arc length: σ(t) =
∫ t

0
‖γ̇(τ)‖2 dτ

I Can parameterize curve by arc length → γ(σ)

I Tangent unit vector T (σ) := γ′(σ),
Curvature vector T ′(σ),
Curvature κ(σ) = ‖T ′(σ)‖ = (ϕγ(σ))′

Normal unit vector N (σ) := T ′(σ)
‖T ′(σ)‖

I Frenet-Serret frame (2D): T (σ),N (σ)

I Frenet-Serret frame yields an orthonormal basis
along the reference curve

I Curvature defines the curve uniquely up to rigid
motion

N (σ)

T (σ)
κ(σ)

γ(σ)

xe

ye

Optimization-Based Motion Planning and Control for Autonomous Driving Rudolf Reiter 8

Frenet coordinate frame (FCF)

I Let γ(t) be a cont. smooth diff. curve in R2

I Arc length: σ(t) =
∫ t

0
‖γ̇(τ)‖2 dτ

I Can parameterize curve by arc length → γ(σ)

I Tangent unit vector T (σ) := γ′(σ),
Curvature vector T ′(σ),
Curvature κ(σ) = ‖T ′(σ)‖ = (ϕγ(σ))′

Normal unit vector N (σ) := T ′(σ)
‖T ′(σ)‖

I Frenet-Serret frame (2D): T (σ),N (σ)

I Frenet-Serret frame yields an orthonormal basis
along the reference curve

I Curvature defines the curve uniquely up to rigid
motion

N (σ)

T (σ)
κ(σ)

γ(σ)

xe

ye

Optimization-Based Motion Planning and Control for Autonomous Driving Rudolf Reiter 8

Frenet coordinate frame (FCF)

I Let γ(t) be a cont. smooth diff. curve in R2

I Arc length: σ(t) =
∫ t

0
‖γ̇(τ)‖2 dτ

I Can parameterize curve by arc length → γ(σ)

I Tangent unit vector T (σ) := γ′(σ),
Curvature vector T ′(σ),
Curvature κ(σ) = ‖T ′(σ)‖ = (ϕγ(σ))′

Normal unit vector N (σ) := T ′(σ)
‖T ′(σ)‖

I Frenet-Serret frame (2D): T (σ),N (σ)

I Frenet-Serret frame yields an orthonormal basis
along the reference curve

I Curvature defines the curve uniquely up to rigid
motion

N (σ)

T (σ)
κ(σ)

γ(σ)

xe

ye

Optimization-Based Motion Planning and Control for Autonomous Driving Rudolf Reiter 8

Frenet coordinate frame (FCF)

I Let γ(t) be a cont. smooth diff. curve in R2

I Arc length: σ(t) =
∫ t

0
‖γ̇(τ)‖2 dτ

I Can parameterize curve by arc length → γ(σ)

I Tangent unit vector T (σ) := γ′(σ),
Curvature vector T ′(σ),
Curvature κ(σ) = ‖T ′(σ)‖ = (ϕγ(σ))′

Normal unit vector N (σ) := T ′(σ)
‖T ′(σ)‖

I Frenet-Serret frame (2D): T (σ),N (σ)

I Frenet-Serret frame yields an orthonormal basis
along the reference curve

I Curvature defines the curve uniquely up to rigid
motion

N (σ)

T (σ)
κ(σ)

γ(σ)

xe

ye

Optimization-Based Motion Planning and Control for Autonomous Driving Rudolf Reiter 8

Frenet coordinate frame (FCF)

I Let γ(t) be a cont. smooth diff. curve in R2

I Arc length: σ(t) =
∫ t

0
‖γ̇(τ)‖2 dτ

I Can parameterize curve by arc length → γ(σ)

I Tangent unit vector T (σ) := γ′(σ),
Curvature vector T ′(σ),
Curvature κ(σ) = ‖T ′(σ)‖ = (ϕγ(σ))′

Normal unit vector N (σ) := T ′(σ)
‖T ′(σ)‖

I Frenet-Serret frame (2D): T (σ),N (σ)

I Frenet-Serret frame yields an orthonormal basis
along the reference curve

I Curvature defines the curve uniquely up to rigid
motion

N (σ)

T (σ)
κ(σ)

γ(σ)

xe

ye

Optimization-Based Motion Planning and Control for Autonomous Driving Rudolf Reiter 8

Frenet coordinate frame (FCF)

I Let γ(t) be a cont. smooth diff. curve in R2

I Arc length: σ(t) =
∫ t

0
‖γ̇(τ)‖2 dτ

I Can parameterize curve by arc length → γ(σ)

I Tangent unit vector T (σ) := γ′(σ),
Curvature vector T ′(σ),
Curvature κ(σ) = ‖T ′(σ)‖ = (ϕγ(σ))′

Normal unit vector N (σ) := T ′(σ)
‖T ′(σ)‖

I Frenet-Serret frame (2D): T (σ),N (σ)

I Frenet-Serret frame yields an orthonormal basis
along the reference curve

I Curvature defines the curve uniquely up to rigid
motion

N (σ)

T (σ)
κ(σ)

γ(σ)

xe

ye

Optimization-Based Motion Planning and Control for Autonomous Driving Rudolf Reiter 8

Frenet coordinate frame (FCF)

I Let γ(t) be a cont. smooth diff. curve in R2

I Arc length: σ(t) =
∫ t

0
‖γ̇(τ)‖2 dτ

I Can parameterize curve by arc length → γ(σ)

I Tangent unit vector T (σ) := γ′(σ),
Curvature vector T ′(σ),
Curvature κ(σ) = ‖T ′(σ)‖ = (ϕγ(σ))′

Normal unit vector N (σ) := T ′(σ)
‖T ′(σ)‖

I Frenet-Serret frame (2D): T (σ),N (σ)

I Frenet-Serret frame yields an orthonormal basis
along the reference curve

I Curvature defines the curve uniquely up to rigid
motion

N (σ)

T (σ)
κ(σ)

γ(σ)

xe

ye

Optimization-Based Motion Planning and Control for Autonomous Driving Rudolf Reiter 8

Frenet coordinate frame: Osculating circle and evolute

I The osculating circle is the circle that has the same
tangent vector T (σ) and curvature κ(σ) at the
point γ(σ)

I The curve that connects the center points of all
osculating circles is the evolute

γ(σ)

osculating circle

evolute

T (σ1)
T (σ2)

Optimization-Based Motion Planning and Control for Autonomous Driving Rudolf Reiter 9

Motion in the Frenet coordinate frame

I Consider the motion of point p(t)

I The distance of point p(t) to the curve γ(σ) is
r(σ, t) = p(t)− γ(σ)

I The closest point is s(t) = arg minσ
1
2 ‖r(σ, t)‖

2
2

I FONC:

0 =
d

dσ

(1

2
‖r(σ, t)‖22

)
= r(s, t)>T (s)

I Assume, that we know s(t = 0) is optimal, we enforce
optimality along the trajectory, by

0 =
d

dt
r(s, t)>T (s),

I from which it follows

ṡ(t) =

(dp(t)
dt

)>T (s)

1− κ(s)r(s, t)>N (s)

r(s, t)

r(σ, t)

p(t)

γ(s)

γ(σ)

xe

ye

Optimization-Based Motion Planning and Control for Autonomous Driving Rudolf Reiter 10

Motion in the Frenet coordinate frame

I Consider the motion of point p(t)

I The distance of point p(t) to the curve γ(σ) is
r(σ, t) = p(t)− γ(σ)

I The closest point is s(t) = arg minσ
1
2 ‖r(σ, t)‖

2
2

I FONC:

0 =
d

dσ

(1

2
‖r(σ, t)‖22

)
= r(s, t)>T (s)

I Assume, that we know s(t = 0) is optimal, we enforce
optimality along the trajectory, by

0 =
d

dt
r(s, t)>T (s),

I from which it follows

ṡ(t) =

(dp(t)
dt

)>T (s)

1− κ(s)r(s, t)>N (s)

r(s, t)

r(σ, t)

p(t)

γ(s)

γ(σ)

xe

ye

Optimization-Based Motion Planning and Control for Autonomous Driving Rudolf Reiter 10

Motion in the Frenet coordinate frame

I Consider the motion of point p(t)

I The distance of point p(t) to the curve γ(σ) is
r(σ, t) = p(t)− γ(σ)

I The closest point is s(t) = arg minσ
1
2 ‖r(σ, t)‖

2
2

I FONC:

0 =
d

dσ

(1

2
‖r(σ, t)‖22

)
= r(s, t)>T (s)

I Assume, that we know s(t = 0) is optimal, we enforce
optimality along the trajectory, by

0 =
d

dt
r(s, t)>T (s),

I from which it follows

ṡ(t) =

(dp(t)
dt

)>T (s)

1− κ(s)r(s, t)>N (s)

r(s, t)

r(σ, t)

p(t)

γ(s)

γ(σ)

xe

ye

Optimization-Based Motion Planning and Control for Autonomous Driving Rudolf Reiter 10

Motion in the Frenet coordinate frame

I Consider the motion of point p(t)

I The distance of point p(t) to the curve γ(σ) is
r(σ, t) = p(t)− γ(σ)

I The closest point is s(t) = arg minσ
1
2 ‖r(σ, t)‖

2
2

I FONC:

0 =
d

dσ

(1

2
‖r(σ, t)‖22

)
= r(s, t)>T (s)

I Assume, that we know s(t = 0) is optimal, we enforce
optimality along the trajectory, by

0 =
d

dt
r(s, t)>T (s),

I from which it follows

ṡ(t) =

(dp(t)
dt

)>T (s)

1− κ(s)r(s, t)>N (s)

r(s, t)

r(σ, t)

p(t)

γ(s)

γ(σ)

xe

ye

Optimization-Based Motion Planning and Control for Autonomous Driving Rudolf Reiter 10

Motion in the Frenet coordinate frame

I Consider the motion of point p(t)

I The distance of point p(t) to the curve γ(σ) is
r(σ, t) = p(t)− γ(σ)

I The closest point is s(t) = arg minσ
1
2 ‖r(σ, t)‖

2
2

I FONC:

0 =
d

dσ

(1

2
‖r(σ, t)‖22

)
= r(s, t)>T (s)

I Assume, that we know s(t = 0) is optimal, we enforce
optimality along the trajectory, by

0 =
d

dt
r(s, t)>T (s),

I from which it follows

ṡ(t) =

(dp(t)
dt

)>T (s)

1− κ(s)r(s, t)>N (s)

r(s, t)

r(σ, t)

p(t)

γ(s)

γ(σ)

xe

ye

Optimization-Based Motion Planning and Control for Autonomous Driving Rudolf Reiter 10

Motion in the Frenet coordinate frame

I Consider the motion of point p(t)

I The distance of point p(t) to the curve γ(σ) is
r(σ, t) = p(t)− γ(σ)

I The closest point is s(t) = arg minσ
1
2 ‖r(σ, t)‖

2
2

I FONC:

0 =
d

dσ

(1

2
‖r(σ, t)‖22

)
= r(s, t)>T (s)

I Assume, that we know s(t = 0) is optimal, we enforce
optimality along the trajectory, by

0 =
d

dt
r(s, t)>T (s),

I from which it follows

ṡ(t) =

(dp(t)
dt

)>T (s)

1− κ(s)r(s, t)>N (s)

r(s, t)

r(σ, t)

p(t)

γ(s)

γ(σ)

xe

ye

Optimization-Based Motion Planning and Control for Autonomous Driving Rudolf Reiter 10

Vehicle model in the Frenet coordinate frame

I Recall vehicle model. Identify p(t) as the Cartesian
vehicle position

I Call s(t) longitudinal position state

I Call α(t) := ϕ(t)− ϕγ(s(t)) heading angle
mismatch state

I Identify v(t) =
(dp(t)

dt

)
as the vehicle velocity

I Call n(t) := r(s(t), t)>N (s(t)) lateral position state

I Frenet states xc,F = Fγ(xc,C) = [s, n, α]> ∈ R3

I Dynamics of FCF dependent states

ẋc,F = f c,F(xF, u) =

v cos(α)
1−nκ(s)

v sin(α)
v
l tan(δ)− κ(s)v cos(α)

1−nκ(s)

ϕ

ϕnN (s)

p(t)

α

γ(s)

γ(σ)

ϕγ(s)

xe

ye

Optimization-Based Motion Planning and Control for Autonomous Driving Rudolf Reiter 11

Vehicle model in the Frenet coordinate frame

I Recall vehicle model. Identify p(t) as the Cartesian
vehicle position

I Call s(t) longitudinal position state

I Call α(t) := ϕ(t)− ϕγ(s(t)) heading angle
mismatch state

I Identify v(t) =
(dp(t)

dt

)
as the vehicle velocity

I Call n(t) := r(s(t), t)>N (s(t)) lateral position state

I Frenet states xc,F = Fγ(xc,C) = [s, n, α]> ∈ R3

I Dynamics of FCF dependent states

ẋc,F = f c,F(xF, u) =

v cos(α)
1−nκ(s)

v sin(α)
v
l tan(δ)− κ(s)v cos(α)

1−nκ(s)

ϕ

ϕnN (s)

p(t)

α

γ(s)

γ(σ)

ϕγ(s)

xe

ye

Optimization-Based Motion Planning and Control for Autonomous Driving Rudolf Reiter 11

Vehicle model in the Frenet coordinate frame

I Recall vehicle model. Identify p(t) as the Cartesian
vehicle position

I Call s(t) longitudinal position state

I Call α(t) := ϕ(t)− ϕγ(s(t)) heading angle
mismatch state

I Identify v(t) =
(dp(t)

dt

)
as the vehicle velocity

I Call n(t) := r(s(t), t)>N (s(t)) lateral position state

I Frenet states xc,F = Fγ(xc,C) = [s, n, α]> ∈ R3

I Dynamics of FCF dependent states

ẋc,F = f c,F(xF, u) =

v cos(α)
1−nκ(s)

v sin(α)
v
l tan(δ)− κ(s)v cos(α)

1−nκ(s)

ϕ

ϕnN (s)

p(t)

α

γ(s)

γ(σ)

ϕγ(s)

xe

ye

Optimization-Based Motion Planning and Control for Autonomous Driving Rudolf Reiter 11

Vehicle model in the Frenet coordinate frame

I Recall vehicle model. Identify p(t) as the Cartesian
vehicle position

I Call s(t) longitudinal position state

I Call α(t) := ϕ(t)− ϕγ(s(t)) heading angle
mismatch state

I Identify v(t) =
(dp(t)

dt

)
as the vehicle velocity

I Call n(t) := r(s(t), t)>N (s(t)) lateral position state

I Frenet states xc,F = Fγ(xc,C) = [s, n, α]> ∈ R3

I Dynamics of FCF dependent states

ẋc,F = f c,F(xF, u) =

v cos(α)
1−nκ(s)

v sin(α)
v
l tan(δ)− κ(s)v cos(α)

1−nκ(s)

ϕ

ϕnN (s)

p(t)

α

γ(s)

γ(σ)

ϕγ(s)

xe

ye

Optimization-Based Motion Planning and Control for Autonomous Driving Rudolf Reiter 11

Vehicle model in the Frenet coordinate frame

I Recall vehicle model. Identify p(t) as the Cartesian
vehicle position

I Call s(t) longitudinal position state

I Call α(t) := ϕ(t)− ϕγ(s(t)) heading angle
mismatch state

I Identify v(t) =
(dp(t)

dt

)
as the vehicle velocity

I Call n(t) := r(s(t), t)>N (s(t)) lateral position state

I Frenet states xc,F = Fγ(xc,C) = [s, n, α]> ∈ R3

I Dynamics of FCF dependent states

ẋc,F = f c,F(xF, u) =

v cos(α)
1−nκ(s)

v sin(α)
v
l tan(δ)− κ(s)v cos(α)

1−nκ(s)

ϕ

ϕnN (s)

p(t)

α

γ(s)

γ(σ)

ϕγ(s)

xe

ye

Optimization-Based Motion Planning and Control for Autonomous Driving Rudolf Reiter 11

Vehicle model in the Frenet coordinate frame

I Recall vehicle model. Identify p(t) as the Cartesian
vehicle position

I Call s(t) longitudinal position state

I Call α(t) := ϕ(t)− ϕγ(s(t)) heading angle
mismatch state

I Identify v(t) =
(dp(t)

dt

)
as the vehicle velocity

I Call n(t) := r(s(t), t)>N (s(t)) lateral position state

I Frenet states xc,F = Fγ(xc,C) = [s, n, α]> ∈ R3

I Dynamics of FCF dependent states

ẋc,F = f c,F(xF, u) =

v cos(α)
1−nκ(s)

v sin(α)
v
l tan(δ)− κ(s)v cos(α)

1−nκ(s)

ϕ

ϕnN (s)

p(t)

α

γ(s)

γ(σ)

ϕγ(s)

xe

ye

Optimization-Based Motion Planning and Control for Autonomous Driving Rudolf Reiter 11

Vehicle model in the Frenet coordinate frame

I Recall vehicle model. Identify p(t) as the Cartesian
vehicle position

I Call s(t) longitudinal position state

I Call α(t) := ϕ(t)− ϕγ(s(t)) heading angle
mismatch state

I Identify v(t) =
(dp(t)

dt

)
as the vehicle velocity

I Call n(t) := r(s(t), t)>N (s(t)) lateral position state

I Frenet states xc,F = Fγ(xc,C) = [s, n, α]> ∈ R3

I Dynamics of FCF dependent states

ẋc,F = f c,F(xF, u) =

v cos(α)
1−nκ(s)

v sin(α)
v
l tan(δ)− κ(s)v cos(α)

1−nκ(s)

ϕ

ϕnN (s)

p(t)

α

γ(s)

γ(σ)

ϕγ(s)

xe

ye

Optimization-Based Motion Planning and Control for Autonomous Driving Rudolf Reiter 11

Modeling in two coordinate frames
Comparison

Feature CCF FCF

reference definition 7 3
boundary constraints 7 3
obstacle specification 3 7
disturbance specification 3 7

−20 −10 0 10 20

x (m)

−80

−70

−60

−50

y
(m

)

Cartesian Coordinate Frame

80 90 100 110 120

s (m)

−10

0

10

20

n
(m

)

Frenet Coordinate Frame

0.0

0.5

1.0

1.5

2.0

2.5

3.0

M
P

C
tr

a
je

ct
or

y
x

(t
)

in
(s

)

Optimization-Based Motion Planning and Control for Autonomous Driving Rudolf Reiter 12

Frenet Coordinate Frame: Reference curve

I Transformation along a reference curve γ(σ)

I How to choose this curve?
I Tracking of a center line

I Racing: free to choose

Optimization-Based Motion Planning and Control for Autonomous Driving Rudolf Reiter 13

Frenet Coordinate Frame: Reference curve

I Transformation along a reference curve γ(σ)

I How to choose this curve?
I Tracking of a center line

I Racing: free to choose

Optimization-Based Motion Planning and Control for Autonomous Driving Rudolf Reiter 13

Frenet Coordinate Frame: Reference curve
Optimizing the Reference

I The transformation has one big issue!

I Singular subspace at points [s, n]>, with
1− nκ(s) = 0

I Usually no problem, since curvature is small
nκ(s)� 1

I Can even use the free choice of the reference to our
advantage

Optimization-Based Motion Planning and Control for Autonomous Driving Rudolf Reiter 14

Frenet Coordinate Frame: Reference curve

Solving a priori an optimization problem to obtain γ(σ) that pushes the evolute outside and
increases other favorable numercial properties for NMPC.1

1Rudolf Reiter and Moritz Diehl. “Parameterization Approach of the Frenet Transformation for Model
Predictive Control of Autonomous Vehicles”. In: 2021 European Control Conference (ECC). 2021,
pp. 2414–2419. doi: 10.23919/ECC54610.2021.9655053.

Optimization-Based Motion Planning and Control for Autonomous Driving Rudolf Reiter 15

https://doi.org/10.23919/ECC54610.2021.9655053

Challenges with obstacle avoidance

Optimization-Based Motion Planning and Control for Autonomous Driving Rudolf Reiter 16

Challenges with obstacle avoidance
Problem Statement

I Obstacle shape

I Nonconvex non-homeomorphic planning space

I Interaction and prediction

?

Optimization-Based Motion Planning and Control for Autonomous Driving Rudolf Reiter 17

Challenges with obstacle avoidance
Problem Statement

I Obstacle shape

I Nonconvex non-homeomorphic planning space

I Interaction and prediction

?

Optimization-Based Motion Planning and Control for Autonomous Driving Rudolf Reiter 17

Challenges with obstacle avoidance
Problem Statement

I Obstacle shape

I Nonconvex non-homeomorphic planning space

I Interaction and prediction

?

Optimization-Based Motion Planning and Control for Autonomous Driving Rudolf Reiter 17

Challenge 1: Obstacle shape

Collision avoidance on a straight road in Cartesian coordinates

I convex obstacle shape 3

I state independent shape 3

Optimization-Based Motion Planning and Control for Autonomous Driving Rudolf Reiter 18

Challenge 1: Obstacle shape

Collision avoidance on a curvy road in Cartesian coordinates

I convex obstacle shape 3

I state independent shape 3

Optimization-Based Motion Planning and Control for Autonomous Driving Rudolf Reiter 19

Challenge 1: Obstacle shape

Collision avoidance on a curvy road in Frenet coordinates

I nonconvex obstacle shape 7

I state dependent shape 7

Optimization-Based Motion Planning and Control for Autonomous Driving Rudolf Reiter 20

Combining states of Cartesian and Frenet frame

Goal:

I Reference definition, boundary constraints → Frenet Coordinate Frame (FCF)

I Obstacle specification, Cartesian disturbance (e.g., wind force) → Cartesian Coordinate
Frame (CCF)

Optimization-Based Motion Planning and Control for Autonomous Driving Rudolf Reiter 21

Ways to combine both models
Conventional

Possible formulations of NMPC:

I Use only one CF, approximate and simplify non-smooth constraints
I Dynamics model in CCF: approximate Fγ with artificial path state (MPCC)

(Not reviewed here)
I Dynamics model in FCF: convex over-approximate obstacles → conventional

I Model dynamics in one CF, use Fγ or Fγ−1 to obtain other states

I Model dynamics redundantly in both CFs

Optimization-Based Motion Planning and Control for Autonomous Driving Rudolf Reiter 22

Ways to combine both models
Direct elimination

Possible formulations of NMPC:

I Use only one CF, approximate and simplify non-smooth constraints

I Model dynamics in one CF, use Fγ or Fγ−1 to obtain other states
I Dynamics model in CCF 7: Fγ is an nonlinear optimization problem by itself
I Dynamics model in FCF 3: Fγ−1 can be obtained efficiently → direct elimination2

I Model dynamics redundantly in both CFs

2Rudolf Reiter et al. “Frenet-Cartesian model representations for automotive obstacle avoidance within
nonlinear MPC”. In: European Journal of Control (2023), p. 100847. issn: 0947-3580.

Optimization-Based Motion Planning and Control for Autonomous Driving Rudolf Reiter 23

Ways to combine both models
Lifting

Possible formulations of NMPC:

I Use only one CF, approximate and simplify non-smooth constraints

I Model dynamics in one CF, use Fγ or Fγ−1 to obtain other states

I Model dynamics redundantly in both CFs
I Lifting to higher dimension
I Number of states nx increases from 5 to 8 → lifting3

3Reiter et al., “Frenet-Cartesian model representations for automotive obstacle avoidance within nonlinear
MPC”.

Optimization-Based Motion Planning and Control for Autonomous Driving Rudolf Reiter 24

NMPC Problem
Direct elimination

xF ∈ R5 . . . Frenet states, xc,F ∈ R3 . . . Frenet position states, P . . . obstacle-free set
θ . . . hyperplane variables, Fγ−1 . . . inverse Frenet transformation, ΦF(·) . . . integrator

min
xF
0 ,...,x

F
N ,

u0,...,uN−1

θ1,...,θnopp

N−1∑
k=0

‖uk‖2R +
∥∥xF

k − xF
ref,k

∥∥2

Q
+
∥∥xF

N − xF
ref,N

∥∥2

QN

s.t. xF
0 = x̂F

0 ,

xF
i+1 = ΦF(xF

i , ui,∆t), i = 0, . . . , N − 1,

u ≤ ui ≤ u, i = 0, . . . , N − 1,

xF ≤ xF
i ≤ xF, i = 0, . . . , N,

xc,C ≤ Fγ−1(xc,F) ≤ xc,C,i = 0, . . . , N,

alat ≤ aF
lat(xi) ≤ alat, i = 0, . . . , N,

vN ≤ vN ,
Fγ−1(xc,F) ∈ P(xc,opp,j

i , θj), i = 0, . . . , N − 1,

j = 1, . . . , nopp.

Optimization-Based Motion Planning and Control for Autonomous Driving Rudolf Reiter 25

NMPC Problem
Lifted

xF ∈ R5 . . . Frenet states, xd ∈ R8 . . . lifted states, P . . . obstacle-free set
θ . . . hyperplane variables, Φd(·) . . . model integration function

min
xd
0 ,...,x

d
N ,

u0,...,uN−1
θ1,...,θnopp

N−1∑
k=0

‖uk‖2R+
∥∥xF

k − xF
ref,k

∥∥2

Q
+
∥∥xF

N − xF
ref,N

∥∥2

QN

s.t. xd
0 = x̂d

0 ,

xd
i+1 = Φd(xd

i , ui,∆t), i = 0, . . . , N − 1,

u ≤ ui ≤ u, i = 0, . . . , N − 1,

xd ≤ xd
i ≤ xd, i = 0, . . . , N,

alat ≤ alat(x
d
i) ≤ alat,i = 0, . . . , N,

vN ≤ vN ,
xc,C
i ∈ P(xc,opp,j

i , θj), i = 0, . . . , N − 1,

j = 1, . . . , nopp.

Optimization-Based Motion Planning and Control for Autonomous Driving Rudolf Reiter 26

Evaluation

Setup:

I Simulation on randomized scenarios with three obstacles to overtake

I acados, 6s horizon length, 50 discr. points

I Obstacle formulations:
I Ellipsoids
I Covering circles (1,3,5,7)
I Separating hyper-planes

I Coordinate formulations:
I Conventional (over-approximation)
I Direct elimination
I Lifted ODE

Evaluation:

I Computation time

I Maximum progress

Optimization-Based Motion Planning and Control for Autonomous Driving Rudolf Reiter 27

Results
truck-sized

0.00

0.02

0.04

C
om

p
.

T
im

e
(s

)

Conventional Direct Elimination Lifted ODE

EL C5 C7 HP

200

400

600

F
in

al
P

ro
g
re

ss
(m

)

EL C5 C7 HP EL C5 C7 HP

Truck-Sized Obstacles

Figure: Box-plot comparison of the NMPC solution timings for each real-time iteration and the final
progress after 20 seconds for different obstacle formulations for truck-sized vehicles.

Optimization-Based Motion Planning and Control for Autonomous Driving Rudolf Reiter 28

Results
Computation times

Computation times (ms) for truck-sized obstacles
Conventional Direct Elimination Lifted ODE

EL 1.5± 0.4 1.9± 0.2 28.9% 1.4 ± 0.3 −6.6%
C5 7.2± 1.9 7.6± 1.7 5.5% 7.2± 1.8 −0.0%
C7 14.0± 3.2 14.0± 2.8 −0.1% 13.9± 2.9 −0.4%
HP 7.5± 1.5 7.5± 1.5 −0.1% 7.4± 1.7 −1.6%

car-sized obstacles

EL 1.5± 0.5 2.0± 0.4 29.6% 1.4 ± 0.4 −5.7%
C1 1.4± 0.4 1.9± 0.4 34.0% 1.4± 0.4 −3.5%
C3 3.6± 1.1 4.0± 1.0 12.4% 3.6± 1.1 0.6%
HP 8.0± 2.3 7.9± 1.9 −0.6% 7.7± 2.0 −4.0%

Table: Mean and standard deviation of computation times for different scenarios, obstacle formulations
and lifting formulations. Additionally, the difference in percent to the conventional formulation is given.

Optimization-Based Motion Planning and Control for Autonomous Driving Rudolf Reiter 29

Challenge 1: Obstacle shape

Collision avoidance constraint can be represented as ∞-norm

Optimization-Based Motion Planning and Control for Autonomous Driving Rudolf Reiter 30

Challenge 1: Obstacle shape

∞-norm: Problem with linearization - we create distinct local minima

Optimization-Based Motion Planning and Control for Autonomous Driving Rudolf Reiter 31

Challenge 1: Obstacle shape

2-norm: takes a major share of the free planning space

Optimization-Based Motion Planning and Control for Autonomous Driving Rudolf Reiter 32

Challenge 1: Idea: p-Norm homotopy

0 1 2

ξ1

scaled norm

square

αp =14.207

αp =3.321

αp =2.000

I Norm obstacle constraint in scaled coordinates ξ given by

1 ≥ op(ξ;αp) =

(
1

n

n∑
i=1

|ξ|αp

) 1
αp

I Homotopies are often used to successively add nonlinearity

I Solve sequence of optimization problems and increase norm
value αp in each problem

I Problem: We want to use RTI, i.e., only solve one QP in each
iteration!

Optimization-Based Motion Planning and Control for Autonomous Driving Rudolf Reiter 33

Challenge 1: Idea: Progressive smoothing4

Tighten obstacle along prediction horizon towards closer predictions

0

1

2

p
o
s.
y

tsim = t0, i = 0 i = N
2

exact shape Osv∗

predicted trajectory

current state

linearization point

ScaledNorm

linearized constraint

i=N

0 5

pos. x

0

1

2

p
os

.
y

0 5

pos. x

tsim = t1, i = 0

0 5

pos. x

i = N
2

0 5

pos. x

i = N

4Rudolf Reiter et al. Progressive Smoothing for Motion Planning in Real-Time NMPC. 2024. arXiv:
2403.01830 [eess.SY].

Optimization-Based Motion Planning and Control for Autonomous Driving Rudolf Reiter 34

https://arxiv.org/abs/2403.01830

Challenge 1: Visualisation of Progressive smoothing

Vehicle passing two obstacles with 2-norm vs. progressive smoothing (scaled norm)
Planned trajectories in each RTI step:

0 50 100 150 200 250 300

x (m)

−1

0

1

y
(m

)

2-norm

tight SV shape Osv∗

over-approximation

driven trajectory

0 50 100 150 200 250 300

x (m)

ScaledNorm

0 1 2 3 4 5 6 7
trajectory prediction time (s)

Optimization-Based Motion Planning and Control for Autonomous Driving Rudolf Reiter 35

Challenge 2: Nonconvex non-homeomorphic planning space

Optimization-Based Motion Planning and Control for Autonomous Driving Rudolf Reiter 36

Challenge 2: Example 1

Optimization-Based Motion Planning and Control for Autonomous Driving Rudolf Reiter 37

Challenge 2: Example 2

Optimization-Based Motion Planning and Control for Autonomous Driving Rudolf Reiter 38

Challenge 2: Example 3

Optimization-Based Motion Planning and Control for Autonomous Driving Rudolf Reiter 39

Global optimization for obstacle avoidance
Mixed-integer optimization

I Gradient-based optimization only works for local solutions in continuous space

I Approach 1: search in a discrete space

I Approach 2 : search in a mixed continuous-discrete space mixed integer optimization

Optimization-Based Motion Planning and Control for Autonomous Driving Rudolf Reiter 40

Mixed-integer optimization for motion planning

I Appealing mathematical concept: discrete and continuous controls and states

I Building on powerful commercial solvers (Gurobi, CPLEX, ...)

I solves to global optimum

Optimization-Based Motion Planning and Control for Autonomous Driving Rudolf Reiter 41

Mixed-integer optimization for motion planning

I Exponential worst-case computation time

I Reasonable performance only for mixed-integer quadratic programs

Optimization-Based Motion Planning and Control for Autonomous Driving Rudolf Reiter 42

Mixed-integer quadratic programming for motion planning5

Simplifications

I Obtain linear model either through linearization or point-mass model

I Linear boundary constraints through planning in Frenet frame

I Linear dynamic constraints require conservativeness

I Defining convex disjunctive free spaces → integer variables

5Rien Quirynen, Sleiman Safaoui, and Stefano Di Cairano. Real-time Mixed-Integer Quadratic Programming
for Vehicle Decision Making and Motion Planning. 2023. arXiv: 2308.10069 [math.OC].

Optimization-Based Motion Planning and Control for Autonomous Driving Rudolf Reiter 43

https://arxiv.org/abs/2308.10069

Mixed-integer quadratic programming for motion planning5

Simplifications

I Obtain linear model either through linearization or point-mass model

I Linear boundary constraints through planning in Frenet frame

I Linear dynamic constraints require conservativeness

I Defining convex disjunctive free spaces → integer variables

5Quirynen, Safaoui, and Cairano, Real-time Mixed-Integer Quadratic Programming for Vehicle Decision
Making and Motion Planning.

Optimization-Based Motion Planning and Control for Autonomous Driving Rudolf Reiter 43

Mixed-integer quadratic programming for motion planning5

Simplifications

I Obtain linear model either through linearization or point-mass model

I Linear boundary constraints through planning in Frenet frame

I Linear dynamic constraints require conservativeness

I Defining convex disjunctive free spaces → integer variables

5Quirynen, Safaoui, and Cairano, Real-time Mixed-Integer Quadratic Programming for Vehicle Decision
Making and Motion Planning.

Optimization-Based Motion Planning and Control for Autonomous Driving Rudolf Reiter 43

Mixed-integer quadratic programming for motion planning5

Simplifications

I Obtain linear model either through linearization or point-mass model

I Linear boundary constraints through planning in Frenet frame

I Linear dynamic constraints require conservativeness

I Defining convex disjunctive free spaces → integer variables

5Quirynen, Safaoui, and Cairano, Real-time Mixed-Integer Quadratic Programming for Vehicle Decision
Making and Motion Planning.

Optimization-Based Motion Planning and Control for Autonomous Driving Rudolf Reiter 43

Convex disjunctive free spaces

Osafe

nl

sbs

n

xe

γb = 1

γr = 1

sf

nr

γl = 1

Ocar

γf = 1

I Over-approximating obstacle Ocar by Osafe

I Split into 4 convex regions (left, right, front, back)

I Assign binary indicator variables γl, γr, γf , γb ∈ {0, 1}
I Planning trajectory xe = [xe

0, . . . , x
e
N] with xe

i /∈ Osafe

Optimization-Based Motion Planning and Control for Autonomous Driving Rudolf Reiter 44

Convex disjunctive free spaces

Osafe

nl

sbs

n

xe

γb = 1

γr = 1

sf

nr

γl = 1

Ocar

γf = 1

I Over-approximating obstacle Ocar by Osafe

I Split into 4 convex regions (left, right, front, back)

I Assign binary indicator variables γl, γr, γf , γb ∈ {0, 1}
I Planning trajectory xe = [xe

0, . . . , x
e
N] with xe

i /∈ Osafe

Optimization-Based Motion Planning and Control for Autonomous Driving Rudolf Reiter 44

Convex disjunctive free spaces

Osafe

nl

sbs

n

xe

γb = 1

γr = 1

sf

nr

γl = 1

Ocar

γf = 1

I Over-approximating obstacle Ocar by Osafe

I Split into 4 convex regions (left, right, front, back)

I Assign binary indicator variables γl, γr, γf , γb ∈ {0, 1}

I Planning trajectory xe = [xe
0, . . . , x

e
N] with xe

i /∈ Osafe

Optimization-Based Motion Planning and Control for Autonomous Driving Rudolf Reiter 44

Convex disjunctive free spaces

Osafe

nl

sbs

n

xe

γb = 1

γr = 1

sf

nr

γl = 1

Ocar

γf = 1

I Over-approximating obstacle Ocar by Osafe

I Split into 4 convex regions (left, right, front, back)

I Assign binary indicator variables γl, γr, γf , γb ∈ {0, 1}
I Planning trajectory xe = [xe

0, . . . , x
e
N] with xe

i /∈ Osafe

Optimization-Based Motion Planning and Control for Autonomous Driving Rudolf Reiter 44

Convex disjunctive free spaces
Binary variables to constrain region6

I Given compact set X ⊂ R and continuous function f : X → R
I Find bounds M ≥ maxx∈X f(x) and M ≤ minx∈X f(x)

Property

The implication [f(x) > 0] =⇒ [γ = 1] of a
binary variable γ ∈ {0, 1} that gets activated if
constraint f(x) ≥ 0 is valid, is formulated as

f(x) ≤Mγ.

Property

The implication [γ = 1] =⇒ [f(x) ≥ 0] of a
binary variable γ ∈ {0, 1} that activates
constraint f(x) ≥ 0, is formulated as

f(x) ≥M(1− γ).

I construct disjunction for each region and add for each obstacle j and time k the constraint

(γr)j,k + (γl)j,k + (γf)j,k + (γb)j,k = 1, j = 1, . . . , Nobs, k = 1, . . . , N

I Requires 4 binary variables per obstacle per time step (Nbin = 4NobsN) → too many

6H. P. Williams. Model building in mathematical programming. Hoboken, N.J.: Wiley, 2013. isbn:
9781118443330 1118443330.

Optimization-Based Motion Planning and Control for Autonomous Driving Rudolf Reiter 45

Simplifying the problem further

I Static obstacle?

1. Spatial reformulation of dynamics7

2. Binary decisions only in lateral dimension8→ N ′bin = O(Nobs), before Nbin = O(NobsN)

I Multi-lane road environment?

1. Optimize for transitions in the spatio-temporal coordinates (submitted to IEEE TIV)
2. Binary decisions related to gaps on each lane → N ′′bin = O(Nobs +N)

I Otherwise?

1. Use machine learning to replace combinatorial part of optimizer (submitted to IEEE TCST)
2. Train predictor for binary variables
3. Fix binary variables
4. Solve remaining QP

7Robin Verschueren et al. “Time-optimal Race Car Driving using an Online Exact Hessian based Nonlinear
MPC Algorithm”. In: 2021 European Control Conference (ECC). 2016.

8Rudolf Reiter et al. “Mixed-integer optimization-based planning for autonomous racing with obstacles and
rewards”. In: IFAC-PapersOnLine 54.6 (2021). 7th IFAC Conference on NMPC, pp. 99–106. issn: 2405-8963.

Optimization-Based Motion Planning and Control for Autonomous Driving Rudolf Reiter 46

Simplifying the problem further

I Static obstacle?

1. Spatial reformulation of dynamics7

2. Binary decisions only in lateral dimension8→ N ′bin = O(Nobs), before Nbin = O(NobsN)

I Multi-lane road environment?

1. Optimize for transitions in the spatio-temporal coordinates (submitted to IEEE TIV)
2. Binary decisions related to gaps on each lane → N ′′bin = O(Nobs +N)

I Otherwise?

1. Use machine learning to replace combinatorial part of optimizer (submitted to IEEE TCST)
2. Train predictor for binary variables
3. Fix binary variables
4. Solve remaining QP

7Verschueren et al., “Time-optimal Race Car Driving using an Online Exact Hessian based Nonlinear MPC
Algorithm”.

8Reiter et al., “Mixed-integer optimization-based planning for autonomous racing with obstacles and
rewards”.

Optimization-Based Motion Planning and Control for Autonomous Driving Rudolf Reiter 46

Simplifying the problem further

I Static obstacle?

1. Spatial reformulation of dynamics7

2. Binary decisions only in lateral dimension8→ N ′bin = O(Nobs), before Nbin = O(NobsN)

I Multi-lane road environment?

1. Optimize for transitions in the spatio-temporal coordinates (submitted to IEEE TIV)
2. Binary decisions related to gaps on each lane → N ′′bin = O(Nobs +N)

I Otherwise?

1. Use machine learning to replace combinatorial part of optimizer (submitted to IEEE TCST)
2. Train predictor for binary variables
3. Fix binary variables
4. Solve remaining QP

7Verschueren et al., “Time-optimal Race Car Driving using an Online Exact Hessian based Nonlinear MPC
Algorithm”.

8Reiter et al., “Mixed-integer optimization-based planning for autonomous racing with obstacles and
rewards”.

Optimization-Based Motion Planning and Control for Autonomous Driving Rudolf Reiter 46

Results: Learning of combinatorial part of MIQP

Optimization-Based Motion Planning and Control for Autonomous Driving Rudolf Reiter 47

Challenge 3: Prediction and interaction

?

Optimization-Based Motion Planning and Control for Autonomous Driving Rudolf Reiter 48

Obstacle prediction by inverse optimal control9

I Including a physics-based parametric model of the opponent inducing a racing intention

I The racing intention is modeled by means of a parametric nonlinear low-level program
(LLNLP) for progress maximization

I The estimation of the parameters is performed by solving an inverse optimal control (IOC)
problem, which enforces the optimality conditions for the LLNLP as constraints

I Output: Predicted trajectories (non-interactive)

9Rudolf Reiter et al. “An Inverse Optimal Control Approach for Trajectory Prediction of Autonomous Race
Cars”. In: 2022 European Control Conference (ECC). 2022, pp. 146–153. doi:
10.23919/ECC55457.2022.9838100.

Optimization-Based Motion Planning and Control for Autonomous Driving Rudolf Reiter 49

https://doi.org/10.23919/ECC55457.2022.9838100

The Prediction Algorithm
Architecture

M instances

“Slow”
Online

Past observed trajectoriesCurrent initial state(s)

Precomputed

“Fast”
Online

CQP

HLNLP

LLNLPPath prediction

Global optimal
racing curve

Predicted trajectories

a

b c

d

e

f

g

a: global racing path
b: initial state x̄0

c: trajectory data samples
d: constraints amax

e: weights w
f: Cartesian coordinates and
curvature parameters of blended path
segment κ̄
g: predicted trajectory

Optimization-Based Motion Planning and Control for Autonomous Driving Rudolf Reiter 50

The Prediction Algorithm
Low-Level Program for Trajectory Prediction (LLNLP)

M instances

“Slow”
Online

Past observed trajectoriesCurrent initial state(s)

Precomputed

“Fast”
Online

CQP

HLNLP

LLNLPPath prediction

Global optimal
racing curve

Predicted trajectories

a

b c

d

e

f

g

Optimization-Based Motion Planning and Control for Autonomous Driving Rudolf Reiter 51

The Prediction Algorithm
Low-Level Program for Trajectory Prediction (LLNLP)

I Nonlinear program to maximize progress (xN) along given path

I Weights Q,R, qN estimated by HLNLP

I Acceleration constraints ha(xk, κ̄, amax) estimated by CQP

min
x0,...,xN ,
U0,...,UN−1
s0,...,sN

N−1∑
k=0

‖xk − xrk‖22,Q + ‖Uk − U r
k‖22,R + qN

>xN +

N∑
k=0

α11
>sLL,k + α2 ‖sLL,k‖22

s.t. x0 = x̄0

xk+1 = F (xk, Uk,∆t), k = 0, . . . , N − 1

x 4 xk 4 x

0 4 ha(xk, κ̄, amax) + sLL,k

0 4 sLL,k, k = 0, . . . , N,

Optimization-Based Motion Planning and Control for Autonomous Driving Rudolf Reiter 52

The Prediction Algorithm
Quadratic Program for Constraint Estimation

M instances

“Slow”
Online

Past observed trajectoriesCurrent initial state(s)

Precomputed

“Fast”
Online

CQP

HLNLP

LLNLPPath prediction

Global optimal
racing curve

Predicted trajectories

a

b c

d

e

f

g

Optimization-Based Motion Planning and Control for Autonomous Driving Rudolf Reiter 53

The Prediction Algorithm
Quadratic Program for Constraint Estimation

−7.5 −5.0 −2.5 0.0 2.5 5.0 7.5

alat (
m
s2)

−12

−10

−8

−6

−4

−2

0

2

4

a l
on

(
m s2
)

estimated bounds
measured data

I Constraints are estimated separatly from the weights

I Symmetric polytope with 8 bounds (5 independent)
fitted to data

I Iterative QP, with previously estimated value as
”arrival term” (moving horizon estimation)

Optimization-Based Motion Planning and Control for Autonomous Driving Rudolf Reiter 54

The Prediction Algorithm
High Level Program for Weight Estimation (HLNLP)

M instances

“Slow”
Online

Past observed trajectoriesCurrent initial state(s)

Precomputed

“Fast”
Online

CQP

HLNLP

LLNLPPath prediction

Global optimal
racing curve

Predicted trajectories

a

b c

d

e

f

g

Optimization-Based Motion Planning and Control for Autonomous Driving Rudolf Reiter 55

The Prediction Algorithm
High Level Program for Weight Estimation (HLNLP)

I We optimize for the weights w = [Q,R, qN] of the LLNLP

I L2 loss on observed trajectories and predicted trajectories

I We use only states x and controls u that are solutions of the LLNLP PLL(w, x̄0, κ̄, amax)

I → bi-level optimization problem

min
X,U,w

NT−1∑
k=1

‖xk − x̄k‖22,Qk + ‖w − ŵ‖22,P−1

s.t. X, U ∈ argminPLL(w, x̄0, κ̄, amax)

w < 0

I We use the the KKT conditions of the LLNLP as constraints in the HLNLP

I Homotopy on penalized relaxation

I Arrival cost with weights P−1

Optimization-Based Motion Planning and Control for Autonomous Driving Rudolf Reiter 56

Evaluation
Setup

The simulation:

I Simulation framework with dynamic vehicle model

I Comparisons with Notebook

I Hardware-in-the-loop for competitions

I Las Vegas race track

I 1k randomly parameterized test runs

I (Due Covid currently only simulated races)

The setup:

I Hardware: HP Elitebook, Intel Core i7-8550 CPU (1.8 GHz) and Nvidia Drive PX2

I The used frequency for the synchronous LLNLP was 10 Hz

I The HLNLP and CQP ran asynchronously

I 200 seconds until HLNLP converged

Optimization-Based Motion Planning and Control for Autonomous Driving Rudolf Reiter 57

Results
Timings

Table: Solver timing statistics (Nvidia Drive PX2)

Component Solver tmax (ms) tave (ms) fail rate (%)

PP none < 1 < 1 0
CQP OSQP 15.5 8.1 0

HLNLP IPOPT 6237 520 5
LLNLP acados, HPIPM 2748 91 0.2

Optimization-Based Motion Planning and Control for Autonomous Driving Rudolf Reiter 58

Results
Final Prediction Errors by Prediction Horizon (converged)

2.0 4.0 6.0 8.0 10.0
Prediciton horizon (s)

25

50

75

100

125

150

175

Po
si

ti
on

Er
ro

r
(m

)

constant velocity
LLNLP
all components

Optimization-Based Motion Planning and Control for Autonomous Driving Rudolf Reiter 59

Challenge 3: Interaction

I Strategic planning of autonomous race cars → blocking agents, efficient overtaking

I Other agents have static policies (otherwise game theoretic problem)

I Approach 1: use optimization-based control (NMPC)

I Problem: complex prediction model inside optimization problem

I Approach 2: use reinforcement learning

I Problem: can hardly account for safety, loads of data needed for simple maneuvers

I Our approach10: Combine reinforcement learning and NMPC hierarchically

10Rudolf Reiter et al. “A Hierarchical Approach for Strategic Motion Planning in Autonomous Racing”. In:
2023 European Control Conference (ECC). 2023, pp. 1–8. doi: 10.23919/ECC57647.2023.10178143.

Optimization-Based Motion Planning and Control for Autonomous Driving Rudolf Reiter 60

https://doi.org/10.23919/ECC57647.2023.10178143

Relation to the safety filter11

Original

The safety filter uses an NLP to project controls onto safe sets

11Kim Peter Wabersich and Melanie N. Zeilinger. “A predictive safety filter for learning-based control of
constrained nonlinear dynamical systems”. In: Automatica 129 (2021), p. 109597. issn: 0005-1098. doi:
https://doi.org/10.1016/j.automatica.2021.109597.

Optimization-Based Motion Planning and Control for Autonomous Driving Rudolf Reiter 61

https://doi.org/https://doi.org/10.1016/j.automatica.2021.109597

Relation to the safety filter
Our approach

Optimization-Based Motion Planning and Control for Autonomous Driving Rudolf Reiter 62

Relation to the safety filter
Our approach

Safety Filter HILEPP (ours)

min
X,U

‖u0 − ā‖2R

s.t. x0 = x̄0, xN ∈ St

xi+1 = F (xi, ui), i = 0, . . . , N − 1

xi ∈ X , ui ∈ U , i = 0, . . . , N − 1

min
X,U

L(X,U, a)

s.t. x0 = x̂0, xN ∈ St

xi+1 = F (xi, ui), i = 0, . . . , N − 1

xi ∈ X , ui ∈ U , i = 0, . . . , N − 1,

Optimization-Based Motion Planning and Control for Autonomous Driving Rudolf Reiter 63

Architecture
Details

MPPRL-policy Pa

Xrefz

πMPP(z, P)πθ(s)

Environment

HILEPP

s
gs(z) GP (a)

x̂

πLL(Xref , x̂)ego vehicle

Nob controlled opponent vehicles

random road

Invariance pre-conditioning function gs(z) sets inputs s to RL policy a = πΘ(s). Function
GP (a) transforms RL actions a to MPP parameters P . Policy πMPP(z, P) solves NLP and
outputs safe reference Xref .

Optimization-Based Motion Planning and Control for Autonomous Driving Rudolf Reiter 64

NMPC (MPP) formulation
Gerneral

I MPP is a NMPC used as planner

I Kinematic vehicle model in Frenet coordinate frame

I Obstacle avoidance with ellipses - circles

I Obstacle prediction in two modes (Defined according to racing rules):
I Follower: generously assuming straight linear motion in Frenet coordinate frame
I Leader: evasively allowing only decelerating linear motion

Optimization-Based Motion Planning and Control for Autonomous Driving Rudolf Reiter 65

NMPC (MPP) formulation
Cost function

Cost parameterization through RL actions:

GP (a) : a→
(
ξref,0(a), . . . , ξref,N (a), Qw(a)

)
ξref,k(a) = [0 n 0 v 0]> ∈ Rnx
Qw(a) = diag([0 wn 0 wv 0])

NMPC (MPP) parameterized cost:

L(X,U, a,Ξ) =

N−1∑
k=0

‖xk − ξref,k(a)‖2Qw(a) + ‖uk‖2R

+ ‖xN − ξref,N (a)‖2Qt +

N∑
k=0

‖σk‖2Qσ,2 + |q>σ,1σk|.

We compare two action vectors (with or without setting weights):

I HILEPP-I: aI := [n, v]>

I HILEPP-II: aII := [n, v, wn, wv]
>

Optimization-Based Motion Planning and Control for Autonomous Driving Rudolf Reiter 66

Reinforcement Learning

General

I Markov assumption, state space S, action space A, looking for policy πθ : S 7→ A, reward
function R : S ×A 7→ R

I We use a soft actor critic algorithm with actor πθ and a critic Qφ

Specific

I Pre-processing function from ego state s = [n, v, α]>, road curvature evaluations κ(·) and
obstacle states z to (partly) invariant RL states sobi = [ζobi − ζ, nobi , vobi , αobi]

>

sk = gs(zk) = [κ(ζ + di), . . . , κ(ζ + dN), s>, s>ob1
, . . . , s>obN]>

I We use the reward for center line speed ṡ and the total rank, with

R(s, a) =
ζ̇

200
+

Nob∑
i=1

1
ζk>ζ

obi
k

Optimization-Based Motion Planning and Control for Autonomous Driving Rudolf Reiter 67

Evaluation
Setup

I Training of ∼ 106 steps in randomized simulated scenarios

I Only the ego agent is trained, opponents only use MPP

I Three different scenario types

overtaking

agents

blocking

mixed

eg
o

w
ea

ke
r

st
ro

n
ge

r

starting positionsscenarios

I Comparison of
I MPP
I RL
I HILEPP-I (only reference states)
I HILEPP-II (reference states and weights)

Optimization-Based Motion Planning and Control for Autonomous Driving Rudolf Reiter 68

Evaluation
Performance

I pure RL struggled to keep up even with MPP

I overtaking does not require much strategy

I HILEPP-II performs better than HILEPP-I

Overtaking

Blocking

0 200 400 600 800

Average Return

Mixed

HILEPP I HILEPP II RL MPP

Module Mean± Std. Max

MPP 5.45± 2.73 8.62
RL policy 0.13± 0.01 0.26
HILEPP-I 6.90± 3.17 9.56
HILEPP-II 7.41± 2.28 9.21

Table: Computation times (ms) of modules.

Optimization-Based Motion Planning and Control for Autonomous Driving Rudolf Reiter 69

Conclusion and discussion

I Motion planning with collision avoidance is challenging due to
I nonconvexity
I interaction
I uncertainty
I safety requirements
I real-time requirements

I Approaches from different communities
I Continuous optimization
I Discrete optimization → graph search, tree search
I Mixed-integer optimization
I Reinforcement learning

I It seems promising to combine approaches based on individual strengths
I MPC+RL
I Safety filter
I Tailored mixed-integer programming
I Learning-based mixed-integer programming
I MINLP?

Optimization-Based Motion Planning and Control for Autonomous Driving Rudolf Reiter 70

Thanks to all supervisors and colleagues!

Thank you for your attention!

Optimization-Based Motion Planning and Control for Autonomous Driving Rudolf Reiter 71

	Introduction
	Ways to combine both models
	NMPC Algorithm
	Results
	The Prediciton Algorithm
	Architecture
	Trajectory Computation
	Constraint Estimation
	Weight Estimation

	Results
	Setup
	Evaluation

	Relation to the safety filter
	Architecture
	NMPC
	RL
	Conclusion and discussion

