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Introduction
Task: Motion Planning on Highways
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Introduction
Specifics about Motion Planning on Highways

mostly straight
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Specifics about Motion Planning on Highways

parallel lanes
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Introduction
Specifics about Motion Planning on Highways

multiple similar obstacles
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Introduction
Specifics about Motion Planning on Highways

rules: lane keeping
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Introduction
Specifics about Motion Planning on Highways

rules: keep right, speed limit
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Introduction
Objective of Motion Planning on Highways

objective: set speed, set lane
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Introduction
Basic Idea: Formulate Problem as MIQP1

min
X∈Rnx×N ,

U∈Rnu×N−1,

β∈{0,1}Nb

J(X,U, β)

s.t.

x0 = x̂

xi+1 = Axi +Bui, i = 1, . . . , N − 1,

H(X,U) ≥ 0,

Hbin(X,β) ≥ 0

1Rien Quirynen, Sleiman Safaoui, and Stefano Di Cairano. “Real-time Mixed-Integer Quadratic Programming
for Vehicle Decision Making and Motion Planning”. In: ArXiv (2023). arXiv: 2308.10069 [math.OC].
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Introduction
Basic Idea: Formulate Problem as MIQP

I Slow online computation time

I MIQP solvers are not usual for embedded hardware

I MIQP solvers are expensive

min
X∈Rnx×N ,

U∈Rnu×N−1,

β∈{0,1}Nb

J(X,U, β)

s.t.

x0 = x̂

xi+1 = Axi +Bui, i = 1, . . . , N − 1,

H(X,U) ≥ 0,

Hbin(X,β) ≥ 0
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Introduction
Speed-up computation time

learn binary assignments through simulation by supervised learning
→ only solve QP → much faster than solving MIQP
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Introduction
Related Fields

motion planning on highways in autonomous driving stack

AD
Motion
Plannning
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Introduction
Related Fields

mixed integer optimization problem formulation

Mixed-
Integer
Optimization
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Introduction
Related Fields

structure-exploiting neural network architecture

(Geometric)
Deep
Learning
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Introduction
Related Fields

(Geometric)
Deep
Learning

AD
Motion
Plannning

Mixed-
Integer
Optimization

This Work
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Outline

1. Mixed-Integer Problem Formulation
2. Learning Binary Variables
3. Geometric Deep Learning

4. Additional Concepts
5. Simulation Results
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1. Mixed-Integer Problem Formulation
Related Fields

Mixed-
Integer
Optimization
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1. Mixed-Integer Problem Formulation

Two categories of binary variables:

I Expression of nonconvex configuration space as a disjunction of convex sets

I Choice of lane
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1. Mixed-Integer Problem Formulation

Two categories of binary variables:

I Expression of nonconvex configuration space as a disjunction of convex sets (Why?)

I Choice of lane
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1. Mixed-Integer Problem Formulation
Nonconvex free configuration space

I Over-approximating obstacle Ocar by Osafe

I Split configuration space F = R2\Osafe into 4 convex sets (left, right, front, back)

I Assign binary indicator variables γl, γr, γf , γb ∈ {0, 1}
I 4 binary variables per obstacle per time step: 4NobsN binary variables

Osafe

nl

sbs

n

xe

γb = 1

γr = 1

sf

nr

γl = 1

Ocar

γf = 1
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1. Mixed-Integer Problem Formulation
Choice of a lane

I Adding reference state as decision variable ñ, with X̃n = [ñ0, . . . , ñN ]>

I Adding binary lane change control variables λup, λdown

I Reference dynamics:
ñi+1 = ñi + dlaneλ

up
i − dlaneλ

down
i

I Tracking cost for lateral state n:

N∑
i=0

wn(ñi − ni)2

I adding 2N lane change binary variables to a total

Nbin = 2N + 4NNobs
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1. Mixed-Integer Problem Formulation

min
X∈Rnx×N ,U∈Rnu×N−1,

X̃n∈RN ,

Γ∈{0,1}4NNobs ,

Λ∈{0,1}2N

J(X,U, X̃n)

s.t.

x0 = x̂, ñ0 = n̂0,

xi+1 = Axi +Bui, i = 0, . . . , N − 1,

ñi+1 = ñi + dlaneλ
up
i − dlaneλ

down
i , i = 0, . . . , N − 1,

H(X,U) ≥ 0,

Hobs(xi, (γd)i,j) ≥ 0 i = 0, . . . , N − 1,

j = 1, . . . , Nobs
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2. Learning Binary Variables
Generate training data and class labels

I Randomize problem features pi
I ego state
I obstacle states
I vehicle dimensions
I road geometry

I Solve MIQPs to obtain binary assignments β?i = (Γ?i ,Λ
?
i )

I If β?i not in data set D: generate class label li and add (pi, li, β
?
i ) to D

I If β?i in data set D: use already existing label lj , with β?i = β?j and add (pi, lj , β
?
j ) to D
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2. Learning Binary Variables
Training a classifier

Use data set D to train a classifier that predicts β?

I Labels learned by classification as opposed to regression

I Number of assignments in theory 24NNobs+2N

I If assignment was never seen in data, no label exists

I Shown to perform better than regression2

2Dimitris Bertsimas and Bartolomeo Stellato. “The voice of optimization”. en. In: Machine Learning 110.2
(Feb. 2021), pp. 249–277. issn: 1573-0565. doi: 10.1007/s10994-020-05893-5.
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3. Geometric Deep Learning

(Geometric)
Deep
Learning
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3. Geometric Deep Learning
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3. Geometric Deep Learning

Fundamentally, geometric deep learning involves encoding a geometric understanding of data
as an inductive bias in deep learning models to give them a helping hand.
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3. Geometric Deep Learning
Equivariance and Invariance

Definition

Let f(x) : XM → Y be a function on a set of variables x = {x1, . . . , xM} ∈ XM and let G be
the permutation group on {1, . . . ,M}. The function f is permutation invariant, if
f(g · x) = f(x) for all g ∈ G, x ∈ XM .

Definition

Let f(x) : XN → YN be a function on a set of variables x = {x1, . . . , xN} ∈ XN and let G be
the permutation group on {1, . . . , N}. The function f is permutation equivariant, if
f(g · x) = g · f(x) for all g ∈ G, x ∈ XN .
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3. Geometric Deep Learning
Equivariance and Invariance

Why is invariance and equivariance interesting for our task?
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3. Geometric Deep Learning
Equivariance and Invariance
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3. Geometric Deep Learning
Equivariance and Invariance

time step i

other parameters

vehicle parameters

equivariance

invariance

(γobs)j,i


1

0
0
0




1

0
0
0




1

0
0
0




1

0
0
0




0

1

0
0




0

1

0
0




0

0

0

1



[
0
0

]
(λlc)i

[
1
0

]


1

0

0

0




1
0

0

0




1
0

0

0


o

b
stacle

j

Machine Learning for MIQP Rudolf Reiter 31



3. Geometric Deep Learning
Equivariance and Invariance

Number Np of permutations of n elements is Np = n!
For 10 obstacles this would be Np = 3628800 different scenarios, while they all correspond to

only one scenario
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3. Geometric Deep Learning
Permutation Invariant Layers3

Let x ∈ RD be features of a set element, P ∈ RM×M a permutation matrix and the
matrix X = (x1, . . . , xm)> ∈ RM×D stacks the features as rows. A function f(·) is

permutation invariant, iff f(X) = f(PX). One permutation invariant function is

f(X) = ρ(

M∑
m=1

φ(xm))

3Manzil Zaheer et al. “Deep Sets”. In: Advances in Neural Information Processing Systems. Vol. 30. Curran
Associates, Inc., 2017.
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3. Geometric Deep Learning
Permutation Equivariant Layers4

The function fΘ(X) = σ(ΘX), with D = 1, Θ ∈ RM×M , X ∈ RM and fΘ : RM → RM is
permutation equivariant iff all the off-diagonal elements of Θ are tied together and all the

diagonal elements are equal as well. That is,

Θ = λI + γ(11>), λ, γ ∈ R, 1> = [1, . . . , 1]> ∈ RM , I ∈ RM×M is identity

4Zaheer et al., “Deep Sets”.
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3. Geometric Deep Learning
Permutation Equivariant Layers5

This result can be easily extended to higher dimensions, i.e., D input and D′ output channels.
Then, X ∈ RM×D, y ∈ RM×D′ , λ, γ become matrices Λ,Γ ∈ RD×D′ .

Layer function: f(X) = σ(XΛ− (11>)XΓ)

input X ∈ RM×D weights Λ ∈ RD×D′ weights Γ ∈ RD×D′

M

MD

D

+ (11>)

D′ D′

5Zaheer et al., “Deep Sets”.
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4. Additional Concepts
Recurrence

I The prediction is a time series of binary assignments → using a recurrent decoder to
generate a time series8

I Allows for variable length predictions in addition to the variable number of obstacles

8Abhishek Cauligi et al. “PRISM: Recurrent Neural Networks and Presolve Methods for Fast Mixed-integer
Optimal Control”. In: Proceedings of The 4th Annual Learning for Dynamics and Control Conference. Vol. 168.
Proceedings of Machine Learning Research. PMLR, 2022, pp. 34–46.
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4. Additional Concepts
Final Recurrent Equivariant Deep Set Architecture

FF

FF fee(heq)

fuu(hus)

K layers

feu(heq)

fue(hus)

heq
k

heq
k
′

hus
k
′

LSTM

sum over
features

set elements

LSTM Eq. Bin. Γ

Binary
Variables B

Unstructured
Binaries Λ

hus
k

hidden state

recurrent set elements

recurrent hidden state

ζeq

ζus

Features Π
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4. Additional Concepts

I Slacked QP: After predicting the binary variables, the remaining QP is solved with slacks
on the fixed binary variables

I NN Ensemble: Several differently trained neural networks and slacked QPs are solved in
parallel → lowest-cost solution is chosen

I Feasibility Projection: To enhance safety, an additional NLP is solved with nonlinear
obstacle constraints to project possibly unsafe trajectories

I Lowest-level MPC: Lowest-level MPC tracks the planned trajectory
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5. Results
Comparison of neural network architectures

I Comparing the share of wrong predictions (misclassification) of all binary variables on test
data set

I Architectures
I Feed Forward (FF)
I Long Short Term Memory (LSTM)
I Equivariant and Invariant Deep Sets (EDS)
I Equivariant, Invariant Layers and LSTM decoder (REDS)
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5. Results
Comparison of neural network architectures
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5. Results
Comparison in closed-loop simulations

I Comparing expert MIQP with proposed stack:
I ensemble of (1 to 10) REDS networks for predictions of binaries
I slacked QP
I feasibility projector

I Both variants followed by a lowest-level NMPC tracking controller

I On randomized CommonRoad Cologne highway scenarios with SUMO backend
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5. Results
Comparison in closed-loop simulations
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Outlook

Interesting further work
I Diving deeper into geometric deep learning

I Using geometric deep learning for other control systems tasks (e.g., exploiting invariances to
other groups, such as Euclidean group)

I Finding more generic layers for any MIQP (graph neural networks, transformers)

I More applications
I Applying structure to large SUMO simulations for coordinating traffic
I Multi-agent coordination of e.g., drones

I Improving the algorithm
I Conditioned predictions along time axis to generate multiple prediction candidates
I “Sandwiching” equivariant and recurrent layers
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Thank you for your attention!
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