Equivariant Deep Learning of Mixed-Integer Optimal Control Solutions for Vehicle Decision Making and Motion Planning

Rudolf Reiter, Rien Quirynen, Moritz Diehl, Stefano Di Cairano

Systems Control and Optimization Laboratory, University of Freiburg

Group Reatreat SYSCOP June 10, 2024

Task: Motion Planning on Highways

Specifics about Motion Planning on Highways

mostly straight

Specifics about Motion Planning on Highways

parallel lanes

Specifics about Motion Planning on Highways

multiple similar obstacles

Specifics about Motion Planning on Highways

rules: lane keeping

Specifics about Motion Planning on Highways

rules: keep right, speed limit

Objective of Motion Planning on Highways

objective: set speed, set lane

Basic Idea: Formulate Problem as MIQP¹

$$\min_{\substack{X \in \mathbb{R}^{n_x \times N}, \\ U \in \mathbb{R}^{n_u \times N-1}, \\ \beta \in \{0,1\}^{N_b} } } J(X, U, \beta)$$
s.t.
$$x_0 = \hat{x}$$
$$x_{i+1} = Ax_i + Bu_i, \quad i = 1, \dots, N-1,$$
$$H(X, U) \ge 0,$$
$$H_{\text{bin}}(X, \beta) \ge 0$$

¹Rien Quirynen, Sleiman Safaoui, and Stefano Di Cairano. "Real-time Mixed-Integer Quadratic Programming for Vehicle Decision Making and Motion Planning". In: *ArXiv* (2023). arXiv: 2308.10069 [math.0C].

Rudolf Reiter

Basic Idea: Formulate Problem as MIQP

- Slow online computation time
- MIQP solvers are not usual for embedded hardware
- MIQP solvers are expensive

$$\min_{\substack{X \in \mathbb{R}^{n_x \times N}, \\ U \in \mathbb{R}^{n_u \times N-1}, \\ \beta \in \{0,1\}^{N_{\mathrm{b}}}, \end{cases}} } J(X, U, \beta)$$
s.t.
$$x_0 = \hat{x}$$
$$x_{i+1} = Ax_i + Bu_i, \quad i = 1, \dots, N-1,$$
$$H(X, U) \ge 0,$$
$$H_{\mathrm{bin}}(X, \beta) \ge 0$$

Speed-up computation time

learn binary assignments through simulation by supervised learning \rightarrow only solve QP \rightarrow much faster than solving MIQP

Related Fields

motion planning on highways in autonomous driving stack

Related Fields

mixed integer optimization problem formulation

Related Fields

structure-exploiting neural network architecture

Related Fields

Outline

1. Mixed-Integer Problem Formulation

- 2. Learning Binary Variables
- 3. Geometric Deep Learning
 - 4. Additional Concepts
 - 5. Simulation Results

Related Fields

Two categories of binary variables:

- Expression of nonconvex configuration space as a disjunction of convex sets
- Choice of lane

Two categories of binary variables:

- Expression of nonconvex configuration space as a disjunction of convex sets (Why?)
- Choice of lane

- ▶ Over-approximating obstacle \mathcal{O}^{car} by \mathcal{O}^{safe}
- ▶ Split configuration space $\mathcal{F} = \mathbb{R}^2 \setminus \mathcal{O}^{safe}$ into 4 convex sets (left, right, front, back)

- ▶ Over-approximating obstacle \mathcal{O}^{car} by \mathcal{O}^{safe}
- ▶ Split configuration space $\mathcal{F} = \mathbb{R}^2 \setminus \mathcal{O}^{\text{safe}}$ into 4 convex sets (left, right, front, back)
- Assign binary indicator variables $\gamma_l, \gamma_r, \gamma_f, \gamma_b \in \{0, 1\}$

- ▶ Over-approximating obstacle \mathcal{O}^{car} by \mathcal{O}^{safe}
- ▶ Split configuration space $\mathcal{F} = \mathbb{R}^2 \setminus \mathcal{O}^{\text{safe}}$ into 4 convex sets (left, right, front, back)
- Assign binary indicator variables $\gamma_l, \gamma_r, \gamma_f, \gamma_b \in \{0, 1\}$
- ▶ 4 binary variables per obstacle per time step: $4N_{obs}N$ binary variables

Choice of a lane

- Adding reference state as decision variable \tilde{n} , with $\tilde{X}_n = [\tilde{n}_0, \dots, \tilde{n}_N]^\top$
- Adding binary lane change control variables $\lambda^{up}, \lambda^{down}$
- Reference dynamics:

$$\tilde{n}_{i+1} = \tilde{n}_i + d_{\text{lane}} \lambda_i^{\text{up}} - d_{\text{lane}} \lambda_i^{\text{down}}$$

► Tracking cost for lateral state *n*:

$$\sum_{i=0}^{N} w_n (\tilde{n}_i - n_i)^2$$

 \blacktriangleright adding 2N lane change binary variables to a total

$$N_{\rm bin} = 2N + 4NN_{\rm obs}$$

2. Learning Binary Variables

Generate training data and class labels

- Randomize problem features p_i
 - ego state
 - obstacle states
 - vehicle dimensions
 - road geometry
- Solve MIQPs to obtain binary assignments $\beta_i^{\star} = (\Gamma_i^{\star}, \Lambda_i^{\star})$
- ▶ If β_i^{\star} not in data set \mathcal{D} : generate class label l_i and add $(p_i, l_i, \beta_i^{\star})$ to \mathcal{D}
- ▶ If β_i^{\star} in data set \mathcal{D} : use already existing label l_j , with $\beta_i^{\star} = \beta_j^{\star}$ and add $(p_i, l_j, \beta_j^{\star})$ to \mathcal{D}

Training a classifier

Use data set ${\mathcal D}$ to train a classifier that predicts β^\star

- Labels learned by classification as opposed to regression
- Number of assignments in theory $2^{4NN_{obs}+2N}$
- If assignment was never seen in data, no label exists
- Shown to perform better than regression²

²Dimitris Bertsimas and Bartolomeo Stellato. "The voice of optimization". en. In: *Machine Learning* 110.2 (Feb. 2021), pp. 249–277. ISSN: 1573-0565. DOI: 10.1007/s10994-020-05893-5.

Geometric Deep Learning Grids, Groups, Graphs, Geodesics, and Gauges

Michael M. Bronstein¹, Joan Bruna², Taco Cohen³, Petar Veličković⁴

May 4, 2021

Geom	etric Deep Learning Models	68
5.1	Convolutional Neural Networks	69
5.2	Group-equivariant CNNs	74
5.3	Graph Neural Networks	77
5.4	Deep Sets, Transformers, and Latent Graph Inference	80
5.5	Equivariant Message Passing Networks	83
5.6	Intrinsic Mesh CNNs	86
5.7	Recurrent Neural Networks	89
5.8	Long Short-Term Memory networks	95

5

Fundamentally, geometric deep learning involves encoding a geometric understanding of data as an inductive bias in deep learning models to give them a helping hand. Equivariance and Invariance

Definition

Let $f(x) : \mathbb{X}^M \to \mathbb{Y}$ be a function on a set of variables $x = \{x_1, \ldots, x_M\} \in \mathbb{X}^M$ and let \mathcal{G} be the permutation group on $\{1, \ldots, M\}$. The function f is **permutation invariant**, if $f(g \cdot x) = f(x)$ for all $g \in \mathcal{G}, x \in \mathbb{X}^M$.

Definition

Let $f(x) : \mathbb{X}^N \to \mathbb{Y}^N$ be a function on a set of variables $x = \{x_1, \ldots, x_N\} \in \mathbb{X}^N$ and let \mathcal{G} be the permutation group on $\{1, \ldots, N\}$. The function f is **permutation equivariant**, if $f(g \cdot x) = g \cdot f(x)$ for all $g \in \mathcal{G}, x \in \mathbb{X}^N$.

Equivariance and Invariance

Why is invariance and equivariance interesting for our task?

Equivariance and Invariance

obstacle j

Equivariance and Invariance

Equivariance and Invariance

Equivariance and Invariance

Number $N_{\rm p}$ of permutations of n elements is $N_{\rm p}=n!$ For 10 obstacles this would be $N_{\rm p}=3628800$ different scenarios, while they all correspond to only one scenario

Permutation Invariant Layers³

Let $x \in \mathbb{R}^D$ be features of a set element, $P \in \mathbb{R}^{M \times M}$ a permutation matrix and the matrix $X = (x_1, \ldots, x_m)^\top \in \mathbb{R}^{M \times D}$ stacks the features as rows. A function $f(\cdot)$ is permutation invariant, iff f(X) = f(PX). One permutation invariant function is

$$f(X) = \rho(\sum_{m=1}^{M} \phi(x_m))$$

³Manzil Zaheer et al. "Deep Sets". In: *Advances in Neural Information Processing Systems*. Vol. 30. Curran Associates, Inc., 2017.

Rudolf Reiter

Permutation Equivariant Layers⁴

The function $f_{\Theta}(X) = \sigma(\Theta X)$, with D = 1, $\Theta \in \mathbb{R}^{M \times M}$, $X \in \mathbb{R}^{M}$ and $f_{\Theta} : \mathbb{R}^{M} \to \mathbb{R}^{M}$ is permutation equivariant iff all the off-diagonal elements of Θ are tied together and all the diagonal elements are equal as well. That is,

$$\Theta = \lambda I + \gamma(11^{\top}), \quad \lambda, \gamma \in \mathbb{R}, \quad 1^{\top} = [1, \dots, 1]^{\top} \in \mathbb{R}^M, \quad I \in \mathbb{R}^{M \times M} \text{ is identity}$$

⁴Zaheer et al., "Deep Sets".

Permutation Equivariant Layers⁵

This result can be easily extended to higher dimensions, i.e., D input and D' output channels. Then, $X \in \mathbb{R}^{M \times D}$, $y \in \mathbb{R}^{M \times D'}$, λ, γ become matrices $\Lambda, \Gamma \in \mathbb{R}^{D \times D'}$.

Layer function: $f(X) = \sigma(X\Lambda - (11^{\top})X\Gamma)$

⁵Zaheer et al., "Deep Sets".

Permutation Equivariant Layers⁶

This result can be easily extended to higher dimensions, i.e., D input and D' output channels. Then, $X \in \mathbb{R}^{M \times D}$, $y \in \mathbb{R}^{M \times D'}$, λ, γ become matrices $\Lambda, \Gamma \in \mathbb{R}^{D \times D'}$.

Layer function: $f(X) = \sigma(X\Lambda - (11^{\top})X\Gamma)$

⁶Zaheer et al., "Deep Sets".

Permutation Equivariant Layers⁷

This result can be easily extended to higher dimensions, i.e., D input and D' output channels. Then, $X \in \mathbb{R}^{M \times D}$, $y \in \mathbb{R}^{M \times D'}$, λ, γ become matrices $\Lambda, \Gamma \in \mathbb{R}^{D \times D'}$.

Layer function: $f(X) = \sigma(X\Lambda - (11^{\top})X\Gamma)$

⁷Zaheer et al., "Deep Sets".

Recurrence

- ▶ The prediction is a time series of binary assignments \rightarrow using a recurrent *decoder* to generate a time series⁸
- Allows for variable length predictions in addition to the variable number of obstacles

⁸Abhishek Cauligi et al. "PRISM: Recurrent Neural Networks and Presolve Methods for Fast Mixed-integer Optimal Control". In: *Proceedings of The 4th Annual Learning for Dynamics and Control Conference*. Vol. 168. Proceedings of Machine Learning Research. PMLR, 2022, pp. 34–46.

4. Additional Concepts

Final Recurrent Equivariant Deep Set Architecture

Rudolf Reiter

- Slacked QP: After predicting the binary variables, the remaining QP is solved with slacks on the fixed binary variables
- ► NN Ensemble: Several differently trained neural networks and slacked QPs are solved in parallel → lowest-cost solution is chosen
- Feasibility Projection: To enhance safety, an additional NLP is solved with nonlinear obstacle constraints to project possibly unsafe trajectories
- Lowest-level MPC: Lowest-level MPC tracks the planned trajectory

Comparison of neural network architectures

- Comparing the share of wrong predictions (misclassification) of all binary variables on test data set
- Architectures
 - Feed Forward (FF)
 - Long Short Term Memory (LSTM)
 - Equivariant and Invariant Deep Sets (EDS)
 - Equivariant, Invariant Layers and LSTM decoder (REDS)

5. Results

Comparison of neural network architectures

Comparison in closed-loop simulations

- Comparing expert MIQP with proposed stack:
 - ensemble of (1 to 10) REDS networks for predictions of binaries
 - slacked QP
 - feasibility projector
- Both variants followed by a lowest-level NMPC tracking controller
- On randomized CommonRoad Cologne highway scenarios with SUMO backend

5. Results

Comparison in closed-loop simulations

Interesting further work

- Diving deeper into geometric deep learning
 - Using geometric deep learning for other control systems tasks (e.g., exploiting invariances to other groups, such as Euclidean group)
 - Finding more generic layers for any MIQP (graph neural networks, transformers)

More applications

- Applying structure to large SUMO simulations for coordinating traffic
- Multi-agent coordination of e.g., drones
- Improving the algorithm
 - Conditioned predictions along time axis to generate multiple prediction candidates
 - "Sandwiching" equivariant and recurrent layers

Thanks to the Coauthors!

Thank you for your attention!