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Talk roadmap (20 min)

1. Why combine MPC and RL?

2. ACAMPC: idea + formulation

3. Guarantees: what is (and isn't) promised

4. Real-time version: ACAMPC-RTI + evaluation of infeasible rollouts
5. Experiments: Snow-Hill + Autonomous Driving

6. Takeaways
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Motivati complementary strengths (and pain poi

MPC (online optimization) RL (actor—critic)
e Handles constraints naturally e Global exploration via interaction

e High local accuracy, interpretable objective e Learns policy (actor) and value (critic)

e Challenges: e Challenges:
e local minima (nonconvex NLP) e limited accuracy / approximation error
e computation limits = short horizons e safety + constraint satisfaction not
e terminal cost/constraints often hard to guaranteed
design (no steady state) e training cost / sim-to-real concerns

Goal: Use RL to provide global guidance (warm-start + terminal value), while MPC refines

actions locally and constraint-aware.

IReiter et al. (2025). Synthesis of Model Predictive Control and Reinforcement Learning: Survey and
Classification. arXiv:2502.02133.

Rudolf Reiter AC4AMPC 2/20



Core idea: ACAMPC in one slide

What ACAMPC does
At each control step, solve a finite-horizon MPC problem where

e the actor 7(s) provides a rollout warm-start (escape local minima / speed convergence),
e the critic J(s) (or Q(s, u)) provides a terminal cost (approx. infinite horizon),

e optionally, an extra actor rollout of length R improves robustness to critic error.

Why the “A” and “C” both matter
e Actor-only: better initialization, but horizon still short-sighted.

e Critic-only: better terminal shaping, but solver may get trapped without good initial
guess.

e ACAMPC: terminal cost approximation and better (local) optimum.
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Problem setup and MPC objective (discounted)

Discrete-time deterministic dynamics: sx1 = F(sk, uk), c(s,u) >0, v € (0,1].

Standard discounted MPC objective (horizon N):
-1

V(s u) = ) v c(sk, uk) + 7" Ve(sw).
0

=

x
I

AC4MPC terminal cost with rollout R:

= Zvi c(si,#(si)) + YRI(sr),  siv1 = F(si, #(s))-

Resulting objective (free controls for 0.V — 1, then actor fixed):

N+R—-1

Vn.gr(s,u) Z'y c(sk, uk) Z Y (s, 7(sk)) + YR J(snir).
k=N

Key knobs: N (optlmlzatlon hor.) vs. R (mitigate critic errors without adding decision vars).
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Closed-loop guarantee: what the theory says (high-level)

Critic assumptions (informal)
The critic approximately satisfies a one-sided Bellman inequality for the actor:

~

’}/JA(F(S, 7(s))) < J(s) — c(s,7(s)) + 0, f(s) < Ji(s) +e.

Performance bound (simplified)
For v € (0,1), the ACAMPC closed-loop cost is bounded by

jAC4MPC(50) < Ji(so) — UN,R(SO) +7N+R5 + Y
—— 1—v

MPC improvement over actor rollout

Interpretation:

e If actor is suboptimal (on g > 0), ACAMPC can improve it.
e Critic errors enter as YV*R: longer N and/or R suppress them.

e Guarantee does not require global optimality in the real-time (suboptimal) version.
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From concept to real-time: AC4MPC-RTI

policy initialization

current state a q
optimal converged trajectory
Time t1,

Time t2
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Figure 1: One time initialization converges over iterations.

policy roll-out

policy roll-out,

policy roll-out

Time t1

Time t2

Figure 2: Reinitialization at each time step does not
converge over iterations.

Problem: RTI (one/few SQP steps per closed-loop iter.) means trajectories are not fully
converged but re-initialized with policy at each time step.
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From concept to real-time: ACAMPC-RTI overview
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Figure 3: RTI (one/few SQP steps per closed-loop iter.) ’lmmo“]% """""""""""""" y ] """"""""

means trajectories are not fully converged.
Figure 4: AC4MPC-RTI: policy rollout (red), periodic
re-init of parallel MPC (yellow), trajectory evaluation (green),
shift update (purple).

Why this is needed: RTI (one/few SQP steps per closed-loop iter.) means trajectories are not

fully converged.
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AC4MPC-RTI mechanics: parallelization 4 selection

Two MPC instances + actor rollout:
Key parameters

e Active MPC: warm-start from shifted previous o . .
. e P: re-init period (exploration
best trajectory

frequency)
e Parallel MPC: reinitialized every P steps with . )
o M, M,: SQP steps per tick (active /
actor rollout
parallel)

e Actor rollout: always available candidate .
e R: evaluation rollout length

Selection rule (each step): choose the candidate o .

with lowest predicted cost (via ac4eval). * a € [0,1]: feasibility correction
strength

Effect: preserves RTI's “tracking a local optimum”

but periodically injects a globally-informed

initialization to escape poor basins.
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Evaluating infeasible multiple-shooting trajecto

Issue: RTI 4+ multiple shooting = candidate
(s,u) may violate dynamics at shooting nodes. Znt1

Fix: simulate a corrected rollout:

O = up+o (7 (5)—7(sk)), Skr1 = F(3k, d).

e o = 0: pure open-loop forward sim

. Figure 5: Cost evaluati ith multiple shooti i
e o = 1: full actor-based correction (close g 0st evaluation with multiple shooting requires

gaps)
Then append an actor rollout of length R and
add critic at the end.

feasibility projection.
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now-Hill toy problem (setup)

Dynamics: 1D point mass with position p,
velocity v:
p=v, V=utawp), |u<1L

Key property: must first move away to gain
speed, otherwise gets stuck.

Purpose of this experiment:

Target

Smooth Snowy Hill

Icy Slope

x=0 Position ()~
e show local minima in short-horizon MPC —~
o LI — res(p)

e show why actor+-critic together matters B —

% 72 T T T T lT‘IaX
e compare to DP baseline in low dimension -10 -8 —6 —4 -2 0

p (m)
Figure 6:
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Snow-Hill: qualitative behavior (value/cost maps)

Figure 7: Value fun. and traj.: nominal MPC suffers local minima; AC4MPC escapes via warm-start + terminal shaping.
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Takeaway: In a nonconvex landscape, better terminal shaping and a better initial guess are

both needed to consistently reach good solutions.
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Snow-Hill: RTI behavior
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Observation: Two kinds of switching: policy

step vs. MPC step and initialization within

Figure 8: AC4MPC-RTI switches between candidates; MPC.
parallel MPC reinit every P steps.
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Snow-Hill: quantitative results + RTI behavior
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Figure 9: Closed-loop cost + compute time: ACAMPC best cost; ACAMPC-RTI near-best at much lower compute.

Takeaway: RTI variant keeps most of the performance gain while enabling real-time operation.
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Snow-Hill: robustness to model mismatch
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Figure 10: Mean performance vs. model-plant mismatch (mass scaling). AC4AMPC tolerates moderate mismatch before
degrading.

Message: benefits rely on a reasonably accurate model (as with MPC), but ACAMPC inherits
MPC-like robustness for moderate mismatch.
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Experiment 2: Autonomous driving overtaking (setup & result)

Task: overtake slower vehicles on randomized v seedl A seed2 4 seed3
road curvature, with constraints: RL.SAC 4 =
0o 0__o RL-PPO A =
e speed limit, accel limits o
e collision avoidance via obstacle constraints MPC 1 i
A.RTI-SAC A AT
e no meaningful steady state = terminal ARTL-PPO 1 Ra
a 0 N=30
design is hard X
MPC + L4
. A.RTI-SAC A AV <
Observation from paper: ARTLPPO 4 S
e large-horizon MPC becomes more sensitive \pe =60 _
to initialization (local minima) ARTLSAC A “v
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Figure 11: Mean episode cost vs. horizon N:
ACAMPC-RTI improves over MPC and RL across
horizons.
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Autonomous driving: what “escaping a local minimum” looks like

Figure 12: Snapshots: MPC may get stuck.
Rudolf Reiter AC4AMPC 16/20



Autonomous driving: what “escaping a local minimum” looks like

RL

Figure 13: Snapshots: RL is conservative.
Rudolf Reiter AC4AMPC 17/20



Autonomous driving: what “escaping a local minimum” looks like

AC4AMPC

Figure 14: Snapshots: ACAMPC-RTI uses policy rollout + terminal guidance to pass.
Rudolf Reiter AC4AMPC 18/20



Practical notes (what you’d tell someone implementing this)

Numerics that matter (from the paper)
e Use smooth networks (e.g., tanh); ReLU harms SQP smoothness.
e Critic inside MPC can destabilize solver: scale it (paper used a factor § in AD).

e Prefer Gauss—Newton / first-order handling for NN terminal term if needed.

Tuning intuition
e increase N when actor is clearly suboptimal (more room to improve)
e increase R when critic is noisy (mitigate terminal error cheaply)
e increase o when gaps/infeasibility are significant (more correction in evaluation)

e decrease P to inject actor warm-starts more frequently (more “globalization”)
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Conclusions (what to remember)

Main takeaways

e AC4MPC combines: actor warm-start + critic terminal shaping + selection among
candidates.

e Theoretical bounds explain the trade-off:

gain over actor =~ op g Vs. critic errors suppressed by ’yNJrR.

o ACAMPC-RTI makes it practical: parallel RTI + evaluation of infeasible rollouts.

e Empirically: avoids local minima where long-horizon MPC struggles; improves cost vs RL
with modest overhead.

Questions?
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