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Talk roadmap (20 min)

1. Why combine MPC and RL?

2. AC4MPC: idea + formulation

3. Guarantees: what is (and isn’t) promised

4. Real-time version: AC4MPC-RTI + evaluation of infeasible rollouts

5. Experiments: Snow-Hill + Autonomous Driving

6. Takeaways
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Motivation: complementary strengths (and pain points)

MPC (online optimization)

• Handles constraints naturally

• High local accuracy, interpretable objective

• Challenges:

• local minima (nonconvex NLP)

• computation limits ⇒ short horizons

• terminal cost/constraints often hard to

design (no steady state)

RL (actor–critic)

• Global exploration via interaction

• Learns policy (actor) and value (critic)

• Challenges:

• limited accuracy / approximation error

• safety + constraint satisfaction not

guaranteed

• training cost / sim-to-real concerns

Goal: Use RL to provide global guidance (warm-start + terminal value), while MPC refines

actions locally and constraint-aware.

1Reiter et al. (2025). Synthesis of Model Predictive Control and Reinforcement Learning: Survey and

Classification. arXiv:2502.02133.
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Core idea: AC4MPC in one slide

What AC4MPC does
At each control step, solve a finite-horizon MPC problem where

• the actor π̂(s) provides a rollout warm-start (escape local minima / speed convergence),

• the critic Ĵ(s) (or Q̂(s, u)) provides a terminal cost (approx. infinite horizon),

• optionally, an extra actor rollout of length R improves robustness to critic error.

Why the “A” and “C” both matter

• Actor-only: better initialization, but horizon still short-sighted.

• Critic-only: better terminal shaping, but solver may get trapped without good initial

guess.

• AC4MPC: terminal cost approximation and better (local) optimum.
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Problem setup and MPC objective (discounted)

Discrete-time deterministic dynamics: sk+1 = F (sk , uk), c(s, u) ≥ 0, γ ∈ (0, 1].

Standard discounted MPC objective (horizon N):

VN(s,u) =
N−1∑
k=0

γkc(sk , uk) + γNVf (sN).

AC4MPC terminal cost with rollout R:

Vf (s) :=
R−1∑
i=0

γ i c(si , π̂(si )) + γR Ĵ(sR), si+1 = F (si , π̂(si )).

Resulting objective (free controls for 0..N − 1, then actor fixed):

VN,R(s,u) =
N−1∑
k=0

γkc(sk , uk) +
N+R−1∑
k=N

γkc(sk , π̂(sk)) + γN+R Ĵ(sN+R).

Key knobs: N (optimization hor.) vs. R (mitigate critic errors without adding decision vars).
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Closed-loop guarantee: what the theory says (high-level)

Critic assumptions (informal)
The critic approximately satisfies a one-sided Bellman inequality for the actor:

γĴ(F (s, π̂(s))) ≤ Ĵ(s)− c(s, π̂(s)) + δ, Ĵ(s) ≤ Jπ̂(s) + ε.

Performance bound (simplified)
For γ ∈ (0, 1), the AC4MPC closed-loop cost is bounded by

J AC4MPC(s0) ≲ Jπ̂(s0) − σN,R(s0)︸ ︷︷ ︸
MPC improvement over actor rollout

+ γN+Rε +
γN+R

1− γ
δ.

Interpretation:

• If actor is suboptimal (σN,R > 0), AC4MPC can improve it.

• Critic errors enter as γN+R : longer N and/or R suppress them.

• Guarantee does not require global optimality in the real-time (suboptimal) version.
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From concept to real-time: AC4MPC-RTI

Figure 1: One time initialization converges over iterations.
Figure 2: Reinitialization at each time step does not

converge over iterations.

Problem: RTI (one/few SQP steps per closed-loop iter.) means trajectories are not fully

converged but re-initialized with policy at each time step.
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From concept to real-time: AC4MPC-RTI overview

Figure 3: RTI (one/few SQP steps per closed-loop iter.)

means trajectories are not fully converged.
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Figure 4: AC4MPC-RTI: policy rollout (red), periodic

re-init of parallel MPC (yellow), trajectory evaluation (green),

shift update (purple).

Why this is needed: RTI (one/few SQP steps per closed-loop iter.) means trajectories are not

fully converged.
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AC4MPC-RTI mechanics: parallelization + selection

Two MPC instances + actor rollout:

• Active MPC: warm-start from shifted previous

best trajectory

• Parallel MPC: reinitialized every P steps with

actor rollout

• Actor rollout: always available candidate

Selection rule (each step): choose the candidate

with lowest predicted cost (via ac4eval).

Effect: preserves RTI’s “tracking a local optimum”

but periodically injects a globally-informed

initialization to escape poor basins.

Key parameters

• P: re-init period (exploration

frequency)

• M,Mp: SQP steps per tick (active /

parallel)

• R: evaluation rollout length

• α ∈ [0, 1]: feasibility correction

strength
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Evaluating infeasible multiple-shooting trajectories: ac4eval

Issue: RTI + multiple shooting ⇒ candidate

(s,u) may violate dynamics at shooting nodes.

Fix: simulate a corrected rollout:

ūk = uk+α
(
π̂(s̄k)−π̂(sk)

)
, s̄k+1 = F (s̄k , ūk).

• α = 0: pure open-loop forward sim

• α = 1: full actor-based correction (close

gaps)

Then append an actor rollout of length R and

add critic at the end.

Figure 5: Cost evaluation with multiple shooting requires

feasibility projection.
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Experiment 1: Snow-Hill toy problem (setup)

Dynamics: 1D point mass with position p,

velocity v :

ṗ = v , v̇ = u + ares(p), |u| ≤ 1.

Key property: must first move away to gain

speed, otherwise gets stuck.

Purpose of this experiment:

• show local minima in short-horizon MPC

• show why actor+critic together matters

• compare to DP baseline in low dimension −10 −8 −6 −4 −2 0
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Figure 6: Snowy slope disturbance and control bounds.
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Snow-Hill: qualitative behavior (value/cost maps)

Figure 7: Value fun. and traj.: nominal MPC suffers local minima; AC4MPC escapes via warm-start + terminal shaping.
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Sj ŝj sjNsim
s̃

DP, ∆Jdp SAC-50k, ∆J sac50 SAC-100k, ∆J sac100

−10 −5 0

p (m)

−2

−1

0

1

2

v
(

m s
)

MPC, ∆Jmpc

−10 −5 0

p (m)

A4MPC, J sac50

−10 −5 0

p (m)

C4MPC, J sac50

−10 −5 0

p (m)

AC4MPC, J sac50

−20 −10 0 10 20
∆J

0 20 40 60
Value J

Takeaway: In a nonconvex landscape, better terminal shaping and a better initial guess are

both needed to consistently reach good solutions.
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Snow-Hill: RTI behavior
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Figure 8: AC4MPC-RTI switches between candidates;

parallel MPC reinit every P steps.
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Observation: Two kinds of switching: policy

step vs. MPC step and initialization within

MPC.
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Snow-Hill: quantitative results + RTI behavior

Figure 9: Closed-loop cost + compute time: AC4MPC best cost; AC4MPC-RTI near-best at much lower compute.

Takeaway: RTI variant keeps most of the performance gain while enabling real-time operation.
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Snow-Hill: robustness to model mismatch
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Figure 10: Mean performance vs. model-plant mismatch (mass scaling). AC4MPC tolerates moderate mismatch before

degrading.

Message: benefits rely on a reasonably accurate model (as with MPC), but AC4MPC inherits

MPC-like robustness for moderate mismatch.
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Experiment 2: Autonomous driving overtaking (setup & result)

Task: overtake slower vehicles on randomized

road curvature, with constraints:

• speed limit, accel limits

• collision avoidance via obstacle constraints

• no meaningful steady state ⇒ terminal

design is hard

Observation from paper:

• large-horizon MPC becomes more sensitive

to initialization (local minima)

• AC4MPC-RTI leverages actor to escape,

critic as terminal shaping
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Figure 11: Mean episode cost vs. horizon N:

AC4MPC-RTI improves over MPC and RL across

horizons.
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Autonomous driving: what “escaping a local minimum” looks like

40 50 60 70 80 90 100
x (m)

−10

0

10

y
(m

)
MPC

Figure 12: Snapshots: MPC may get stuck.
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Autonomous driving: what “escaping a local minimum” looks like
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Figure 13: Snapshots: RL is conservative.
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Autonomous driving: what “escaping a local minimum” looks like
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Figure 14: Snapshots: AC4MPC-RTI uses policy rollout + terminal guidance to pass.
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Practical notes (what you’d tell someone implementing this)

Numerics that matter (from the paper)

• Use smooth networks (e.g., tanh); ReLU harms SQP smoothness.

• Critic inside MPC can destabilize solver: scale it (paper used a factor β in AD).

• Prefer Gauss–Newton / first-order handling for NN terminal term if needed.

Tuning intuition

• increase N when actor is clearly suboptimal (more room to improve)

• increase R when critic is noisy (mitigate terminal error cheaply)

• increase α when gaps/infeasibility are significant (more correction in evaluation)

• decrease P to inject actor warm-starts more frequently (more “globalization”)
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Conclusions (what to remember)

Main takeaways

• AC4MPC combines: actor warm-start + critic terminal shaping + selection among

candidates.

• Theoretical bounds explain the trade-off:

gain over actor ≈ σN,R vs. critic errors suppressed by γN+R .

• AC4MPC-RTI makes it practical: parallel RTI + evaluation of infeasible rollouts.

• Empirically: avoids local minima where long-horizon MPC struggles; improves cost vs RL

with modest overhead.

Questions?
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